
1

Robotics Report
January 2022

UP940148
University of Portsmouth

School of Computing

Abstract—This report will look at improving the functionality
of the KUKA YouBot to retrieve items from shelves in a
warehouse through the use of sensory intelligence and the Multi-
Fragment heuristic approximation algorithm for the Travelling
Salesman Problem.

I. PROBLEM OUTLINE

The problem that this report will look into is gathering items
in a distribution warehouse environment. This problem was
chosen as it is an area in which robots have large potential.

This problem involves locating and collecting items in a
warehouse, and delivering them to a collection point, where
they would then be processed further for distribution.

II. APPROACH

A. Assumptions

For the purpose of this solution, some assumptions have
been made. These are listed below.

• Shelves are organised neatly with even spacing between
items.

• Only one type of item will be stored on each shelf.
• YouBot will be the only robot operating in the warehouse.

Furthermore, there will be no people present in the
warehouse whilst YouBot is operating.

• All items to be collected have identical dimensions and
weight.

• There is a main computer which sends orders to YouBot
and keeps updated records of warehouse layout.

B. Overview

This report aims to build upon the pre-existing system in
which YouBot solves the Hanoi Tower Problem, which is
included in V-REP [1], to allow YouBot to accept a list of
boxes which have been requested, all of which are identified
by unique colours, and locate then deliver them to a conveyer
belt which would take the boxes away from the warehouse
floor.

The warehouse floor will have nodes on the floor at shelves
and intersections to mark out locations that YouBot can
navigate to. These will help YouBot plan what route to take
when collecting the items, as each node forms a vertex in
a graph, and a shortest path-finding algorithm can then be
applied to said graph.

C. Object Collection and Output

When collecting the items. YouBot will know which shelf
the item should be stored on, however it will not know the
exact locations of the items on their respective shelves. In
order to detect the items and pick them up, some form of
sensor will be required. A pressure sensor could be installed
into each shelf which would send the location information to
YouBot, a ray proximity sensor could be installed at the end of
each shelf, facing inwards, which would be able to tell YouBot
how far along the shelf the item is, or YouBot could be fitted
with a vision sensor which it could use to locate the items
itself.

For this report, a vision sensor will be attached to YouBot’s
gripper, which will then be used to determine whether the
gripper is currently pointed at an object. A vision sensor was
chosen for this over a proximity sensor because it will allow
objects to be identified by multiple factors, such as colour and
shape. Colour and shape detection are considered to be outside
the scope of this report and as such, they shall not be applied
here, however they could be additions made in future reports.

YouBot will have some modifications made to its platform
in the form of short wall like structures. These will allow
YouBot to navigate the warehouse without the risk of items
falling off the platform. It also keeps them in positions that
are easy to reach when the items are then removed from the
platform later.

When delivering items to the output conveyor, a proximity
sensor will be added just under YouBot’s arm, facing towards
the mounted platform. This sensor will then be used to detect
objects currently being stored so that they can be easily located
and removed from the platform, and then placed on the output
conveyor (Fig. 15).

D. Network Creation

To begin creating the network, it had to be decided where
each of the shelves within the warehouse would be positioned.
For this report a simple setup was chosen, in which the
warehouse was given eight shelves set up in a grid of two
columns and four rows. This means that the network will need
a total of twelve nodes (Fig. 3). One at each shelf, and one at
each intersection, as shown in Fig. 11.

The output conveyor belt will not be given it’s own node,
as YouBot will have direct access to the output from node A,
and once output of the items has been completed, YouBot will
then return to node A and await new instructions.

2

E. Route Calculation

This report will apply the Multi-Fragment heuristic approx-
imation algorithm (MF algorithm), first defined in 1992 by
John Bentley [2], to calculate the best route for YouBot to
take in order to gather all the requested items in the shortest
time.

The MF algorithm is well suited to this scenario as the
overall network graph can be taken, and a sub-graph can be
created out of all the nodes that YouBot needs to visit, which
will be the shelves that the requested items are stored on. Then
the problem of visiting all the nodes in the sub-graph can be
solved in the same way that one would solve the Travelling
Salesman Problem. For a small network, this solution may be
unnecessarily complex; however, one of the main benefits of
using the MF algorithm to solve this problem is that the results
of this report can be scaled up to a warehouse of any size and
complexity, and the process followed by YouBot will be the
same.

Because MF is a heuristic approximation, increasing the
number of nodes (n) being evaluated will not cause as large
an increase in time taken as a more accurate approach would,
such as a brute-force algorithm. The worst-case performance
time complexity of MF is O(n2 log n)[2] versus a brute-force
algorithm, which would have to search all n! permutations,
which has a time complexity of O(n!)[3].

1) Setup: The MF algorithm builds on Prim’s algorithm
[4] and therefore can only be applied to a connected network,
i.e. one which can have a minimum spanning tree (MST)
constructed out of it’s nodes. Whilst our main network is
connected, it is not guaranteed that any sub-graph we create
will also be connected. If the request requires us to visit nodes
B, C, E, and F, there are no connections between those nodes
in our current matrix (Fig. 5) and therefore the created sub-
graph would be disconnected.

To overcome this issue, we must build upon our distance
matrix so that any sub-graph created will be connected. To do
this, we can use the Floyd-Warshall algorithm [5], with path
reconstruction [6], to calculate the shortest distance and path
between every pair of nodes in the network (Algorithm. 1).

2) Calculation: Once the distance matrix and route matrix
have been created, YouBot will need to calculate the optimal
route to take. It is assumed that both the distance and route
matrices will be generated outside of YouBot’s programming
and will provided to YouBot when needed. So when simulating
this in V-REP, these matrices will be assigned as global
variables and will not be calculated at run-time.

To calculate the optimal route, YouBot will need to read
through the requested items and determine which unique
shelves it needs to visit, as well as how many items are
required from each shelf. To do this we just read through the
request and create a new pair of lists, one keeping track of
unique shelf indexes, and the other counting how many items
are needed from each shelf (Algorithm. 2). Once the request
has been broken down into these lists, we can apply the MF
algorithm on the sub-graph created from the unique nodes.

Algorithm 1 Floyd-Warshall algorithm with path reconstruc-
tion [7], [6]

let dist be a |V | × |V | array of minimum distances initialized
to ∞ (infinity)
let next be a |V | × |V | array of vertex indices initialised to
null
for each edge (u, v) do

dist[u][v] ← w(u, v) // The weight of the edge (u, v)
next[u][v] ← v

end for
for each vertex v do

dist[v][v] ← 0
next[v][v] ← v

end for
for k from 1 to |V | do

for i from 1 to |V | do
for j from 1 to |V | do

if dist[i][j] > dist[i][k] + dist[k][j] then
dist[i][j] ← dist[i][k] + dist[k][j]
next[i][j] ← next[i][k]

end if
end for

end for
end for

Algorithm 2 Sort request into unique nodes and item count
per shelf

let order be a list containing the required nodes // Required
nodes should be assigned based on item name
let nodes be an empty list
let visits be an empty list
for each item in order do

index ← nodes[item] // Index of nodes in which item
appears, or -1 if not in list

if index = -1 then
nodes.push(item)
visits.push(1)

else
visits[index] ++

end if
end for

The MF algorithm takes a list of all relevant edges from the
distance matrix, where a relevant edge is any edge connected
to any required node, organised by weight in ascending order,
and goes through each edge to check whether it can be used
in the final route (Algorithm. 3).

The rules used to create the path are as follows [2]:

1) If one of the edge’s nodes appears in the middle of a
fragment, the edge is discarded.

2) If neither of the edge’s nodes appear in any existing
fragments, then a new fragment is created from that
edge.

3) If one of the edge’s nodes appears at the end of a
fragment (A) and doesn’t appear on the end of any other
fragment, then the edge gets added to fragment A.

3

4) If one of the edge’s nodes appears at the end of a
fragment (A) and the other node appears at the end of
a fragment (B), then the fragments and edge are joined
together to make one larger fragment (fragment A +
edge + fragment B), providing the larger fragment does
not form a closed tour which doesn’t already include all
the nodes required.

The first edge will always be used as it complies with rule 2.
From there you check every edge in order until one fragment
contains all the required nodes, the fragment is then considered
to be a full tour and the algorithm is finished.

Once the MF algorithm has finished finding the best route,
the output will be in the form of a list containing every node,
in the order that they need to be visited. This can then be
returned and the final stage of route calculation can begin.

Algorithm 3 Multi-Fragment algorithm as described by Krari
[8, p. 6]

Require: Sorted set of all edges of the problem E.
Ensure: A tour T.

for each e in E do
if (e is closing T and size(T) ¡ n) or (e has a city already

connected to two others) then
go to next edge

end if
if e is closing T and size(T) = n then

add e to T return T
end if
add e to T

end for

return T

If we were to put in a request to go to nodes B, L, and
F, then using these three algorithms, we would end up with
an output list [B, F, L] which whilst it does form a closed
tour, there’s no direct connections between those nodes. So
we have to use the path reconstruction section of the Floyd-
Warshall algorithm in order to get a traversable route. The
path reconstruction is a relatively simple algorithm with no
intensive calculations.

For each node in the list, we need to find the specific path
to take to get to it. Let’s use the list above again, [B, F, L].

To find the path from B ⇒ F we look at the route matrix
(Fig. 6). We start by putting F in an empty list. Then look at
row B, column F. We can see in this position we have D, so
we add it to the list and next we look at row B, column D,
where we can see we have A, which we add to the list as well,
and now finally we look at row B, column A and we see we
have A again, because we have now found A twice in a row,
we know there are no more nodes to visit before this one, and
so we can add B to the list and reverse it to give us [B, A, D,
F]. This is then the path to take from B ⇒ F (Algorithm. 4)
[6, p. 76].

This process can be applied for each item in the list returned
from the MF algorithm, to give a detailed route for YouBot to
travel.

Algorithm 4 Floyd-Warshall path reconstruction as described
on Wikipedia [7]

procedure path(u, v)
if next[u][v] = null then

return []
end if
path = [u]
while u ̸= v do

u ← next[u][v]
path.append(u)

end while
return path

end procedure

III. AMENDMENTS MADE IN DEVELOPMENT

Throughout the development process, changes may need to
be made to the approach for many reasons. Large changes to
the established approach will be documented in this section.

A. Network model change
When implementing the path-finding algorithm on the given

network shown in Fig. 3, YouBot would stop on every node
as it passed them. This meant that a journey from node A to
node J would pause at nodes D & G. These pauses added
unnecessary lengths of time to the overall process, and so a
solution had to be found to prevent this from happening.

I looked at programming a short algorithm which would
analyse a given route and eliminate unnecessary nodes, so that
if we took the journey from node A to node L, the algorithm
would receive the route A ⇒ D ⇒ G ⇒ J ⇒ L, and would
realise that A, D, G, and J all lay on the same straight line,
with no breaks in direction between them. And as such the
route would be modified to remove the unnecessary nodes
and would simply return the route A ⇒ J ⇒ L.

Implementing such an algorithm ended up being an im-
practical solution as there was no way of determining what
a straight line was in the network without either making
the system far more complex by running larger algorithms,
or losing system scalability due to hard-coded and network
specific functions and values.

In the end, I decided to remodel the whole network to
account for these skippable nodes, by adding extra connections
between nodes A & G, A & J, B & C, D & J, E & F, H & I,
and K & L, as shown in Fig. 7. This network change allows
YouBot to travel across nodes without stopping on them and
wasting additional time.

As a result of the altered network structure, the initial
distance matrix (Fig.4 had to be changed, also the matrix after
the Floyd-Warshall algorithm had been applied (Fig. 5), and
the final route matrix (Fig. 6) both had to be re-calculated to
reflect the alterations. The updated versions are shown in Fig.
8, 9, and 10 respectively.

IV. TESTING

As with any project, the features implemented in this report
must be tested to ensure they consistently work as expected.
This section will cover the testing process and results.

4

A. Network navigation

The values for startNode and endNode were generated
by rolling a D12 die for each required value.

1) Test 1: First test of getRoute(startNode, endNode)
function (before making changes to the network documented
in III.A) Results shown below in Fig. 1.

Input Expected Output Actual output Pass or Fail
8, 7 7 7 Pass

5, 11 4, 7, 10, 11 4, 7, 10, 11 Pass
12, 10 10 10 Pass
4, 12 7, 10, 12 7, 10, 12 Pass
2, 8 1, 4, 7, 8 1, 4, 7, 8 Pass

3, 12 1, 4, 7, 10, 12 1, 4, 7, 10, 12 Pass
5, 7 4, 7 4, 7 Pass

11, 5 10, 7, 4, 5 110, 5 Fail
1, 6 4, 6 4, 6 Pass
4, 5 5 5 Pass

3, 11 1, 4, 7, 10, 11 1, 4, 7, 10, 11 Pass
12, 6 10, 7, 4, 6 10, 6 Fail

Fig. 1: Results from first test of getRoute() function

2) Test 2: Second test of getRoute(startNode, endNode)
function (after making changes to the network documented in
III.A) Results shown below in Fig. 2.

Input Expected Output Actual output Pass or Fail
12, 6 10, 4, 6 10, 4, 6 Pass
5, 2 4, 1, 2 4, 1, 2 Pass
1, 6 4, 6 4, 6 Pass
5, 11 4, 10, 11 4, 10, 11 Pass

12, 10 10 10 Pass
5, 7 4, 7 4, 7 Pass
10, 2 1, 2 1, 2 Pass
4, 5 5 5 Pass
1, 7 7 7 Pass
1, 10 10 10 Pass

Fig. 2: Results from second test of getRoute() function

B. Item Collection and Output

1) Test 1:
Expectation:
When request is [′red′, ′red′, ′green′, ′red′], YouBot should
navigate to the red shelf and pick up three items, then navigate
to the green shelf and pick up one item, or vice versa. After
collecting the items, all four items should be taken to the
output conveyor belt.

Result: Pass
YouBot navigated to the red shelf, picked up three items (Fig.
12), then navigated to the green shelf, picked up one item,
then went to the output conveyor and successfully output all
four items (Fig. 13).

2) Test 2:
Expectation:
When request is [′red′, ′green′, ′blue′, ′cyan′, ′magenta′,
′yellow′, ′black′], YouBot should navigate to each specified
shelf in turn and pick up one item from each shelf. Once it
reaches maximum capacity (three items on platform and one
in hand), YouBot should navigate to the output conveyor and
deposit all items, then it should return to work and collect the
final three items. Then it should go to the output conveyor one
more time and output the remaining items.

Result: Pass
YouBot successfully navigated to every shelf, and after the
first four, made its way to the conveyor to output everything
before continuing (Fig. 14 & 16).

3) Test 3:
Expectation:
When request is [′red′, ′red′, ′red′, ′red′, ′red′], YouBot
should navigate to the red shelf, pick up four red items and
take them to the output. Then it should return to the red shelf
and attempt to get a fifth item, and upon failure to detect one,
it should retreat back to the start and end process.

Result: Fail
YouBot successfully retrieved the first four items and delivered
them to the output. However when it returned for the fifth item,
it search along the shelf, but didn’t give up when it got to the
end. Instead it continued trying to move until it was stuck on
the shelf and couldn’t move (Fig. 17).

V. RESULTS ANALYSIS

A. Network navigation

1) Test 1: After getting the results from the first test of
my getRoute() function shown in Fig. 1 I realised something
was clearly wrong with my algorithm. When startNode was a
higher number than endNode, the algorithm couldn’t properly
figure out what route to take. After some investigating, I
believe the problem was caused because my route matrix isn’t
diagonally symmetrical. So I altered the function slightly so
that if startNode > endNode they get switched around, and
then the resulting list just doesn’t get reversed at the end.

Whilst watching YouBot move, I also noticed it will unnec-
essarily stop on nodes when it could just go straight over them.
I decided to tweak my network to stop this issue. Changes
documented in more detail in section III.A.

2) Test 2: Looking at the results from the second test of
getRoute(), it looks as though the function is now working
as intended in all situations, and is now ready for deployment
into the final solution.

B. Item Collection and Output

Overall, the results for the ItemCollectionandOutput
tests (Section IV.B) were successful. YouBot always collected
all required items and delivered them, with the exception of
IV.B.3)Test1 in which YouBot became stuck on the shelf
because there was no item to locate.

5

Preventing YouBot from getting stuck is a relatively simple
fix. If it counts how many spaces its already searched on the
shelf, then when it gets to the end of a shelf without finding
the item it can just retreat and assume the item isn’t there.
Alternatively some additional sensors could be used here. If
a proximity sensor were mounted to the front of YouBot,
facing outwards and towards the sides, then they could feed
information back to YouBot’s navigation and tell it when to
stop moving.

VI. DISCUSSION & CONCLUSIONS

Overall the chosen approach has been a success. The
navigation system works without any faults in testing, with the
exception of IV.A.1)Test1, however that bug has been fixed
and no other bugs have been found. Efficient route planning is
an essential component in any warehouse system that utilises
robots and using the Multi-Fragment heuristic approximation
algorithm is a good method of planning any route. Whilst
it may be an over-engineered solution for this scenario, it’s
important when developing any system to remember to leave
room for it to expand wherever possible. Providing the distance
and route matrices are updated whenever a warehouse layout
changes, the MF algorithm will scale without failing.

Implementing some more sensory intelligence into the path-
finding process to allow for collision detection and avoidance
would have been a good avenue to explore as this would allow
multiple robots, and even people, to work in one warehouse
without collisions. Exploring the Largest Convex Polygon
concept, as has been done in a paper by Bo Yang et al. [9] is
something that could be exciting to explore for future reports.

A. Future Considerations

• Whilst this approach has been good for one robot in a
warehouse, allowing for multiple robots and people is
more realistic for a practical application of the system, so
collision detection and avoidance would be a high priority
consideration.

• The MF algorithm does a good job of finding an efficient
path to take, however so far the robot doesn’t take into
account whether it has enough space to hold all the items
its heading to. Applying some logic to make it check how
many items it needs from the next shelf and then using
that to maybe decide to go back to the output conveyor
before visiting said shelf.

– Furthermore, applying logic to the initial path-
finding algorithm so that it can attempt to balance
shortest distance and least return trips in one journey.
Potentially through applying a weight to each node
in the network based on how many items are needed
from the shelf, and then attempting to collect them
together into groups of four at a time.

• There’s a lot of room for more sensory intelligence in
this solution. Not all objects are the exact same shape
and size, so adding a vision sensor to scan for the object
needed and calculating the best place to hold it to lift it
up would be a very useful feature to implement.

REFERENCES

[1] Coppelia Robotics AG, V-rep pro edu, version 3.6.2,
Jun. 25, 2019. [Online]. Available: https : / / www .
coppeliarobotics.com/.

[2] J. J. Bentley, “Fast algorithms for geometric travel-
ing salesman problems,” ORSA Journal on Computing,
vol. 4, no. 4, pp. 390–392, 1992. DOI: 10.1287/ijoc.4.4.
387.

[3] C. Chase, H. Chen, A. Neoh, and M. Wilder-Smith, “An
evaluation of the traveling salesman problem,” California
State University, 2020. [Online]. Available: http : / /hdl .
handle.net/20.500.12680/8g84mp499.

[4] R. C. Prim, “Shortest connection networks and some gen-
eralizations,” The Bell System Technical Journal, vol. 36,
no. 6, pp. 1389–1401, 1957. DOI: 10.1002/j.1538-7305.
1957.tb01515.x.

[5] R. W. Floyd, “Algorithm 97: Shortest path,” Communica-
tions of the ACM, vol. 5, no. 6, p. 345, Jun. 1962, ISSN:
0001-0782. DOI: 10.1145/367766.368168.

[6] H. Smith, S. Jameson, P. Sherran, and K. Pledger, Edex-
cel AS and A level Further Mathematics Decision Math-
ematics 1. Pearson Education Limited, 2017, pp. 73–77,
ISBN: 9781292183299.

[7] Wikipedia contributors. “Floyd–warshall algorithm —
Wikipedia, the free encyclopedia.” (2022), [Online].
Available: https : / /en .wikipedia .org/wiki /Floyd%5C%
E2 % 5C % 80 % 5C % 93Warshall algorithm (visited on
01/31/2022).

[8] M. l Krari, B. Ahiod, and B. El Benani, “An empirical
study of the multi-fragment tour construction algorithm
for the travelling salesman problem,” in roceedings of
the 16th International Conference on Hybrid Intelligent
Systems (HIS 2016), A. Abraham, A. Haqiq, A. M. Alimi,
G. Mezzour, N. Rokbani, and A. K. Muda, Eds., Springer
International Publishing, 2017, pp. 278–287, ISBN: 978-
3-319-52940-0.

[9] B. Yang, W. Li, J. Wang, J. Yang, T. Wang, and X. Liu,
“A novel path planning algorithm for warehouse robots
based on a two-dimensional grid model,” IEEE Access,
vol. 8, pp. 80 347–80 357, 2020. DOI: 10.1109/ACCESS.
2020.2991076.

6

FIGURES

Fig. 3: Graph network (Version 1).

A B C D E F G H I J K L
A 0.00 1.45 1.45 2.00 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
B 1.45 0.00 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
C 1.45 ∞ 0.00 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
D 2.00 ∞ ∞ 0.00 1.45 1.45 2.00 ∞ ∞ ∞ ∞ ∞
E ∞ ∞ ∞ 1.45 0.00 ∞ ∞ ∞ ∞ ∞ ∞ ∞
F ∞ ∞ ∞ 1.45 ∞ 0.00 ∞ ∞ ∞ ∞ ∞ ∞
G ∞ ∞ ∞ 2.00 ∞ ∞ 0.00 1.45 1.45 2.00 ∞ ∞
H ∞ ∞ ∞ ∞ ∞ ∞ 1.45 0.00 ∞ ∞ ∞ ∞
I ∞ ∞ ∞ ∞ ∞ ∞ 1.45 ∞ 0.00 ∞ ∞ ∞
J ∞ ∞ ∞ ∞ ∞ ∞ 2.00 ∞ ∞ 0.00 1.45 1.45
K ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 1.45 0.00 ∞
L ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 1.45 ∞ 0.00

Fig. 4: Initial distance matrix (Version 1).

7

A B C D E F G H I J K L
A 0.00 1.45 1.45 2.00 3.45 3.45 4.00 5.45 5.45 6.00 7.45 7.45
B 1.45 0.00 2.90 3.45 4.90 4.90 5.45 6.90 6.90 7.45 8.90 8.90
C 1.45 2.90 0.00 3.45 4.90 4.90 5.45 6.90 6.90 7.45 8.90 8.90
D 2.00 3.45 3.45 0.00 1.45 1.45 2.00 3.45 3.45 4.00 5.45 5.45
E 3.45 4.90 4.90 1.45 0.00 2.90 3.45 4.90 4.90 5.45 6.90 6.90
F 3.45 4.90 4.90 1.45 2.90 0.00 3.45 4.90 4.90 5.45 6.90 6.90
G 4.00 5.45 5.45 2.00 3.45 3.45 0.00 1.45 1.45 2.00 3.45 3.45
H 5.45 6.90 6.90 3.45 4.90 4.90 1.45 0.00 2.90 3.45 4.90 4.90
I 5.45 6.90 6.90 3.45 4.90 4.90 1.45 2.90 0.00 3.45 4.90 4.90
J 6.00 7.45 7.45 4.00 5.45 5.45 2.00 3.45 3.45 0.00 1.45 1.45
K 7.45 8.90 8.90 5.45 6.90 6.90 3.45 4.90 4.90 1.45 0.00 2.90
L 7.45 8.90 8.90 5.45 6.90 6.90 3.45 4.90 4.90 1.45 2.90 0.00

Fig. 5: Distance matrix after Floyd-Warshall algorithm applied (Version 1).

A B C D E F G H I J K L
A A B C D D D D G G G J J
B A B A A D D D G G G J J
C A A C A D D D G G G J J
D A A A D E F G G G G J J
E D D D D E D D G G G J J
F D D D D D F D G G G J J
G D D D D D D G H I J J J
H G G G G G G G H G G J J
I G G G G G G G G I G J J
J G G G G G G G G G J K L
K J J J J J J J J J J K J
L J J J J J J J J J J J L

Fig. 6: Final route matrix (Version 1).

8

Fig. 7: Graph network (Version 2).

A B C D E F G H I J K L
A 0.00 1.45 1.45 2.00 ∞ ∞ 4.00 ∞ ∞ 6.00 ∞ ∞
B 1.45 0.00 2.90 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
C 1.45 2.90 0.00 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
D 2.00 ∞ ∞ 0.00 1.45 1.45 2.00 ∞ ∞ 4.00 ∞ ∞
E ∞ ∞ ∞ 1.45 0.00 2.90 ∞ ∞ ∞ ∞ ∞ ∞
F ∞ ∞ ∞ 1.45 2.90 0.00 ∞ ∞ ∞ ∞ ∞ ∞
G 4.00 ∞ ∞ 2.00 ∞ ∞ 0.00 1.45 1.45 2.00 ∞ ∞
H ∞ ∞ ∞ ∞ ∞ ∞ 1.45 0.00 2.90 ∞ ∞ ∞
I ∞ ∞ ∞ ∞ ∞ ∞ 1.45 2.90 0.00 ∞ ∞ ∞
J 6.00 ∞ ∞ 4.00 ∞ ∞ 2.00 ∞ ∞ 0.00 1.45 1.45
K ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 1.45 0.00 2.90
L ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 1.45 2.90 0.00

Fig. 8: Initial distance matrix (Version 2).

9

A B C D E F G H I J K L
A 0.00 1.45 1.45 2.00 3.45 3.45 4.00 5.45 5.45 6.00 7.45 7.45
B 1.45 0.00 2.90 3.45 4.90 4.90 5.45 6.90 6.90 7.45 8.90 8.90
C 1.45 2.90 0.00 3.45 4.90 4.90 5.45 6.90 6.90 7.45 8.90 8.90
D 2.00 3.45 3.45 0.00 1.45 1.45 2.00 3.45 3.45 4.00 5.45 5.45
E 3.45 4.90 4.90 1.45 0.00 2.90 3.45 4.90 4.90 5.45 6.90 6.90
F 3.45 4.90 4.90 1.45 2.90 0.00 3.45 4.90 4.90 5.45 6.90 6.90
G 4.00 5.45 5.45 2.00 3.45 3.45 0.00 1.45 1.45 2.00 3.45 3.45
H 5.45 6.90 6.90 3.45 4.90 4.90 1.45 0.00 2.90 3.45 4.90 4.90
I 5.45 6.90 6.90 3.45 4.90 4.90 1.45 2.90 0.00 3.45 4.90 4.90
J 6.00 7.45 7.45 4.00 5.45 5.45 2.00 3.45 3.45 0.00 1.45 1.45
K 7.45 8.90 8.90 5.45 6.90 6.90 3.45 4.90 4.90 1.45 0.00 2.90
L 7.45 8.90 8.90 5.45 6.90 6.90 3.45 4.90 4.90 1.45 2.90 0.00

Fig. 9: Distance matrix after Floyd-Warshall algorithm applied (Version 2).

A B C D E F G H I J K L
A A B C D D D G G G J J J
B A B C A D D A G G A J J
C A B C A D D A G G A J J
D A A A D E F A G G J J J
E D D D D E F D G G D J J
F D D D D E F D G G D J J
G A A A D D D G H I J J J
H G G G G G G G H I G J J
I G G G G G G G H I G J J
J A A A D D D G G G J K L
K J J J J J J J J J J K L
L J J J J J J J J J J K L

Fig. 10: Final route matrix (Version 2).

10

Fig. 11: Graph network applied to warehouse.

Fig. 12: YouBot aligning vision sensor with red item before picking up.

11

Fig. 13: YouBot successfully placing green item in centre of conveyor belt.

Fig. 14: YouBot returning to conveyor to output current items before collecting more.

Fig. 15: Proximity sensor detecting item on platform.

12

Fig. 16: Selection of boxes lined up at output.

Fig. 17: YouBot stuck on shelf.

