
An Open-source System for Travelling Salesman
Optimisations
Daniel John Ellis #

School of Computing, University of Portsmouth,
United Kingdom

Oliver Peters #

School of Computing, University of Portsmouth,
United Kingdom

Shadille Samuels #

School of Computing, University of Portsmouth,
United Kingdom

Glanyell White #

School of Computing, University of Portsmouth,
United Kingdom

Rich Boakes #

School of Computing, University of Portsmouth,
United Kingdom

Matt Dennis #

School of Computing, University of Portsmouth,
United Kingdom

Jacek Kopecký #

School of Computing, University of Portsmouth,
United Kingdom

Abstract
This paper introduces the idea of an open-source repository for solutions to the travelling salesman
problem, discusses some preliminary results that have been gathered, and describes the overall aims
that this project hopes to achieve.

2012 ACM Subject Classification Theory of computation → Shortest paths; Mathematics of
computing → Combinatorial optimization

Keywords and phrases Travelling Salesman Problem, Tour Construction, Heuristic

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23

Acknowledgements We want to thank . . .

1 Introduction

1.1 What the Travelling Salesman Problem is
The Travelling Salesman Problem (TSP) is one of the most widely studied problems in
combinatorial optimisation [12, 13, 30]. The problem asks the following question [29, p. 52]:

Given a list of cities, and the distances between each pair of cities, what is the shortest
route that can be taken to visit each city exactly once, and then return to the starting
city?

The general form of the problem was seemingly first studied in the 1930s after math-
ematician Karl Menger invited researchers to consider the problem from a mathematical
perspective [18, p. V], however the problem had already accrued some interest prior to this.
One occurrence of TSP was found in the 1850s with William Hamilton’s creation of The
Traveller’s Dodecahedron which was a puzzle that invited people to try and create a complete
circuit around each of the pegs on the provided dodecahedron [10, p. 35].

1.2 Applications of TSP
The applications of the Travelling Salesman Problem are widespread. Direct uses include
circuit board drilling, X-ray crystallography and VLSI fabrication [11] [25]. Logistical usages

© Daniel John Ellis, Oliver Peters, Shadille Samuels, Glanyell White, Rich Boakes, Matt Dennis, and
Jacek Kopecký;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:student@d-ellis.net
https://orcid.org/0000-0003-1172-3899
mailto:up896088@myport.ac.uk
mailto:up939775@myport.ac.uk
mailto:up960959@myport.ac.uk
mailto:rich.boakes@port.ac.uk
mailto:matt.dennis@port.ac.uk
https://orcid.org/0000-0002-5951-4300
mailto:jacek.kopecky@port.ac.uk
https://orcid.org/0000-0001-6556-7786
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


23:2 Open-source TSP

such as mapping, route planning and crane control are also included. Since the TSP is an
optimization problem, for which the best solution is the shortest route, this means that
improvements upon the given solutions may have knock-on effects to many applications [27].
Some applications would prefer a quicker calculation with an estimated short route, others
would prefer a longer calculation to obtain a more optimal route.

This wealth of applications come from problems of the TSP’s genre: Combinatorial
Optimization. When a single machine has to process many jobs, one at a time, optimization
occurs that may often be an instance of TSP. Branch and bound, a well-known computing
method, was used contextually in the TSP first [15].

Perhaps another reason the TSP generates such interest too, is the intellectual challenge
given. Much like how chess has a staggering number of possible moves, so does the TSP
when a large count of cities are involved. The TSP with n cities has (n-1)!/2 possible tours.
A 7397-city count contains over 1,025,000. [21]. An example of this interest can be seen in
the recent 2020 breakthrough of a metric TSP. Although the efficiency subtracted is only 0.2
billionth of a trillionth of a trillionth, this was the first breakthrough in 44 years [23]. This
shows how attractive the TSP is as a problem to optimize to its highest potential.

1.3 Crowdsourcing Problems

Crowdsourcing information has proved to be an effective way of gathering large quantities
of data, as well as solving mathematical problems in a timely manner. An example of this
lies with Terence Tao and his solution to the Erdős discrepancy[31] which was based on a
conjecture made by Paul Erdős around 1932 that stated [17, p. 469]:

"Let f(n) = ±1. Is it true that for every c there is a d and an m so that
|
∑m

k=1 f(kd)| > c?"

In a post on his blog in 2015 [32], Terence Tao shared two new papers that he had posted
to arXiv, one of which was the proof for the aforementioned Erdős discrepancy problem.
This proof had eluded mathematicians for some 80 years, and the proof that Tao formed was
a result of his own abilities and the assistance from Polymath5 contributors [22].

Another example of crowdsourcing being used in mathematics is the Zooniverse platform
[5]. Created in 2009, Zooniverse was launched after the success of a two year long project,
Galaxy Zoo, which recruited volunteers to classify galaxies. Since then, Zooniverse has
enabled users to create their own projects to allow volunteers to help solve problems such
as classification [3] and transcription [2], often with the aim to improve the capabilities
of machine learning. Many people were interested because they wanted to be a part of
something bigger than themselves. Due to the large number of contributions, projects that
were expected to take decades to complete are being completed in a matter of months. In
just 14 months, Galaxy Zoo 2 users helped to classify over 60 million images [1]. Since their
launch, Zooniverse have almost 400 publications relating to projects that they’ve hosted [4].

Waze, a navigation application that uses data from users to assist give more accurate and
efficient solutions, is a well-known example of crowdsourcing. As a result, it has grown in
popularity as users place more trust in their knowledge of the routes, which allows them to
be aware of any hazards or traffic because the data is regularly updated. Due to the recent
increase in oil costs, things like updating petrol prices are also beneficial to users.



D. J. Ellis et al. 23:3

2 Existing Heuristics

2.1 Genetic algorithms
A genetic algorithm is a type of nature-inspired algorithm that was first detailed by Alan
Turing in 1950 [33, p. 456]. The basic premise is that, rather than attempting to create a
program that simulates how adults solve a problem, we instead simulate how a child might
attempt to solve it, and then we teach the program to improve itself through simulated
evolution. Research involving solving the TSP with a Genetic Algorithm has already been
conducted extensively in academia [26] [19] [28]. Genetic Algorithms come in a range of
methods: binary, path, adjacency, ordinal, matrix representations and more. It is possible
that any of these methods mentioned could be improved in conjunction with an optimisation
method.

2.2 Nearest Neighbour
The Nearest Neighbour (NN) algorithm works by making any arbitrary node i the current
tail of the tour and appending the node j closest to it to the tour. j is then set as the current
tail, and the process repeats until a full tour is created. In every iteration, the current tail
cannot be set to a node already contained in the tour, as this would create a closed cycle,
which is prohibited. A downside to this algorithm is that the worst case of the algorithm
results in a tour that is much longer than the optimal tour [20]. It’s even possible that the
algorithm may not find a feasible tour, even when one exists.

2.2.1 Double-Ended Nearest Neighbour
The Double-Ended Nearest Neighbour (DENN) algorithm works similarly to the NN algorithm,
however whilst NN grows the tour from only one end, DENN allows the tour to grow from
both ends. Research has been conducted on NN, DENN and Hybrid usage in academia and
is proved to be an efficient algorithm [24].

2.3 Multiple Fragment
The Multiple Fragment heuristic is a form of greedy heuristic algorithm that finds a solution
to the Travelling Salesman Problem by creating multiple partial tours and then combining
them together when possible, to create a final tour [8, p. 97]. The name comes from the fact
that each of these partial tours are considered as fragments of the final tour [7, p. 390].

The algorithm works by looking through all the edges in a network in ascending order by
weight, and then evaluating every edge against a set of rules before deciding whether the
edge should be discarded, added to a fragment, or if it should form the beginning of a new
fragment. The rules to decide this are as follows [8, p. 97]:

1. If one of the edge’s nodes appears in the middle of a fragment, the edge is discarded.
2. If neither of the edge’s nodes appear in any existing fragments, then a new fragment is

created from the edge.
3. If one of the edge’s nodes appears at the end of another fragment (A), and doesn’t appear

on the end of any other fragment, then the edge gets appended to fragment A.
4. If one of the edge’s nodes appears at the end of a fragment (A) and the other node

appears at the end of a fragment (B), then the fragments can be combined together along
with the edge to form a longer fragment (C), providing the larger fragment C would not
form a closed tour which doesn’t include all nodes in the network.

CVIT 2016



23:4 Open-source TSP

Figure 1 Pair of edges crossing

3 Existing Optimisations

3.1 2-opt
It is a well established fact that if a Hamiltonian cycle in Euclidean space has any edges
which cross over each other, then the cycle is not the shortest cycle possible for the network
[14, p. 78][6, p. 24]. If you consider the setup shown in figure 1, we have edges (i, q) and (p,
j). If we consider the point at which they cross each other x, we can imagine two triangles
△(i, x, j) and △(p, x, q), because of the triangle inequality, we know that the distance −→

ixj is
greater than or equal to the distance −→

ij , and the same is true for the distance −−→pxq being
greater than or equal to the distance −→pq. Because of this, we know that to shorten the cycle,
we should remove the edges (i, q) and (p, j) and insert the edges (i, j) and (p, q) instead.

3.1.1 Complete 2-opt
A 2-opt implementation is complete if the optimisation checks every possible valid swap that
can be made. This means that a tour can be split into a pair of subtours a and b, these
subtours can be recombined as

ab, ab, ab, and ab
Where a and b are the reversed subtours a and b respectively.

Each newly combined tour can then be compared to the original tour, and if a new tour is
better than the original tour, then that original tour is replaced with the new tour, and the
process continues.

This process of splitting the tour into subtours and evaluating them happens for every
pair of subtours that can be made up of the original tour, which is to say that every pair of
edges will be removed at some point and the resulting subtours will be tested.

In a symmetrical TSP, only two of these combinations need to be considered, because

ab = ab & ab = ab

3.2 3-opt
3-opt is similar to 2-opt, as it requires the removal of three edges, and then the recombination
of the three resulting subtours in unique ways. For a symmetrical TSP, there are a total
of 8 unique ways to recombine the tour, including the initial configuration. If we consider
the tour with three edges removed to form three subtours a, b, and c, then the tour can be
recombined as:



D. J. Ellis et al. 23:5

Figure 2 3-opt combinations in order from left to right, top to bottom: abc, abc, abc, abc, abc,
abc, abc, and abc

Listing 1 Node swapping algorithm.
For i := 0 to length (T) do

// Assume index -1 is last element in list
temp = T.swap(i - 1, i);
If weight (temp) < weight (T) then

T = temp;
end

abc, abc, abc, abc, abc, abc, abc, and abc
Where a, b, c are the reversed subtours a, b, c respectively (Fig. 2).

3-opt should, in the same way as 2-opt, be applied to every possible trio of subtours that
can be made from the original tour, and if one of the new tours is an improvement on the
original tour, then the original tour is replaced with the newly found tour.

It is also worth noting, that in performing 3-opt optimisation, 2-opt is also carried out,
as the tours abc, abc, and abc are each equivalent to single 2-opt moves.

3.3 Node swapping
Perhaps the simplest method of improving a tour, is by iterating through every node of the
tour and checking if swapping the node with the next one in the tour would decrease the
overall weight.

As can be seen in listing 1, this algorithm is incredibly simple, and has a complexity of
only O(n). This simple layout however yields weak results, as can be seen in our comparisons
in appendix A.

3.4 Ant colony optimisation
Ant colony optimisation is an algorithm that is not unique to the travelling salesman problem.
It’s origins are based on real life ant colonies. These ants find the shortest path from a food

CVIT 2016



23:6 Open-source TSP

source to their nest without any visual cues [16, p. 53]. For the TSP, the pheromone trails
update in two stages. First, where the ants begin their tours of the cities, starting from an
initialization rule (e.g. randomly) and lastly, the pheromone is updated when all ants have
finished their tour [9].

4 The Aim

Because of the many practical applications of the Travelling Salesman Problem throughout
different industries, the need to develop faster and more accurate solutions is become
increasingly necessary. Whilst most heuristic solutions can be applied to both the Euclidean
and non-Euclidean forms of the problem with ease, many of the common optimisations used
require the problem to be Euclidean for them to apply.

Our aim is to use crowdsourcing to fuel an open-source project which will combine
different heuristic solutions to improve upon existing methods of solving TSP. This is because,
the time and resources to dedicate to exploring one algorithm with a meaningful number of
nodes, is significant. By crowdsourcing, we invite those focused on a specific algorithm, or
have an abundance of computing power to generate data which we cannot. These results can
then be collected and aggregated to a dataset.

4.1 The idea
The aim of this project is to develop a means to optimise heuristics for symmetric non-
Euclidean TSP, initially by testing different combinations of heuristic algorithms to see if
pairs of heuristics, applied correctly, can be used to gain better solutions. We will present
this data such that the results are comparable. We seek to demonstrate comparing the
average improvement upon the MF algorithm, although future collaboration would build
upon any algorithm specified.

The aim of this project is to develop a means to improve solutions to the non-Euclidean
form of TSP by combining known heuristics together in order to improve the resulting tours.
As mentioned in section 1.2, in 2020 a group of computer scientists made a breakthrough with
a form of the metric TSP where they found a better heuristic, which improves upon what had
previously been the best heuristic for over four decades [23]. We hope that this breakthrough
can reinvigorate the energy directed towards TSP such that more improvements can be found
in time.

4.2 Why crowdsource
We believe that given the success of Polymath5, Zooniverse, and many others, the key to
making progress with TSP is to collaborate and crowdsource in such a way that people have
a platform to pitch their ideas and see how they compare to others. Having more minds
solving the problem will allow for more solutions to be tested to open up the doors to the
development of better heuristics.

4.3 The groundwork
We have set up a GitHub repository at https://github.com/UP940148/TSP_solutions
which holds our existing work, in which we have had some initial success by combining The
Nearest Neighbour, Double-Ended Nearest Neighbour, and Multiple Fragment algorithms
alongside Node Swap, 2-Opt, and 3-Opt optimisation methods on our generated networks.

https://github.com/UP940148/TSP_solutions


D. J. Ellis et al. 23:7

Figure 3 Initial artefact screen

All of our findings so far are available in the aforementioned repository, with the results
currently hosted at https://up940148.github.io/TSP_solutions/frontend. Some of the
most promising results so far include:

In one graph of 100 nodes, Double-Ended Nearest Neighbour (DENN) with the Node
Swap optimisation was improved using the Multiple Fragment (MF) algorithm before
having the resulting tour improved with 3-Opt optimisation. This yielded a tour weight
of 2123.29, whilst MF and 3-Opt alone yielded a weight of 2395.67 and DENN with Node
Swap yielded a tour of 4602.11.
In a graph of 90 nodes, MF with 2-Opt optimisation was improved with MF again, and
then the final tour was improved with 3-Opt. This yielded a tour of weight 2607.93,
whilst MF with 3-Opt yielded a weight of 3000.68 and MF with 2-Opt yielded a weight
of 3572.66 when applied to the same graph.

(Tour weights have been rounded to 2 decimal places)
These results were gathered by first applying a heuristic to a network, then optimising

the tour using one of the optimisation methods listed, before employing a technique similar
to 2-opt, where every possible pair of subtours is considered, and the nodes that make up
those subtours create a new, smaller network which is then has the second algorithm applied
to it. If the second algorithm finds a way that the nodes can be re-ordered such that the
subtours weight is now less than it was before, then the new ordering is used in place of
the subtour and the full tour can be recombined, before being optimised with the second
optimisation strategy.

5 Artefact Structure

In order to evaluate the success of different combinations of algorithms at finding improved
solutions, a testing artefact was created which could run combinations of algorithms on
different tours. The initial artefact created could run the chosen algorithms on x randomly
generated graphs made up of n nodes where 4 ≤ n ≤ 100 (Fig. 3).

The issue found with this initial format was that the algorithms could never be directly
compared with one another as every run generated new random graphs, and so multiple
algorithms could not be tested on the same graph to determine which one produced the best
tour.

The artefact was revisited and a new format has been laid out. This features a JSON file
containing unique tours, spanning from 5 nodes to 100 nodes, in increments of 5, with two
unique tours for every graph size, totalling 40 nodes overall. Each graph is laid out with an

CVIT 2016

https://up940148.github.io/TSP_solutions/frontend


23:8 Open-source TSP

Listing 2 JSON structure of graph with 5 nodes.

{
data: [

[null, 377.02, 097.90, 524.67, 958.42],
[377.02, null, 340.97, 650.37, 363.74],
[097.90, 340.97, null, 167.97, 519.86],
[524.67, 650.37, 167.97, null, 864.12],
[958.42, 363.74, 519.86, 864.12, null]

],
attempts : [

{ weight : 1870.75, algorithm : ’multiFrag ’},
{ weight : 2238.4, algorithm : ’nearestN ’},
{...},
...

]
}

attribute called data which contains the graph’s distance matrix, and an attribute attempts
which is an array of algorithm combinations and their resulting tour weights (Listing 2).

The structure laid out has been chosen because it’s believed that it can be easily modified
to add new graphs, new algorithms can be implemented and included, and the structure can
be recreated to solve forms of TSP beyond just symmetric, non-Euclidean.

5.1 Looking to the future
With this structure created, going forward we hope that those interested in optimising the
TSP can implement their own new algorithms, use greater computing power and be able
to compare and contrast results found. Not only do we think this could be used to find
faster and better combinations, but we also hope that the work done over time can serve as
a large dataset of TSP networks that can be used for benchmarking future progress. Those
interested in this project will be able to generate meaningful data for future optimisations
and algorithm comparisons.

Our current testing has been done by generating subtours in the same way that 2-Opt
does, and then applying a new algorithm to the subtours to see if any improvements are
made. This is not very efficient and so future work is going to be done into calculating
which sections of a tour need to be improved so that they can be isolated and improved by
themselves. Initial research is beginning by searching the tour for any subtours which have a
weight greater than is expected of them based on the mean weight of an edge in the main
tour, and using this method to recalculate subtours.

References
1 Case study: Galaxy zoo. URL: https://www.ox.ac.uk/public-affairs/media-coverage/

media-guidance/case-studies/case-study-galaxy-zoo#:~:text=In%20the%2014%
20months%20the%20site%20was%20up%20Galaxy%20Zoo,make%20over%2060%20million%
20classifications.

2 Davy Notebooks Project. URL: https://www.zooniverse.org/projects/humphrydavy/
davy-notebooks-project.

https://www.ox.ac.uk/public-affairs/media-coverage/media-guidance/case-studies/case-study-galaxy-zoo#:~:text=In%20the%2014%20months%20the%20site%20was%20up%20Galaxy%20Zoo,make%20over%2060%20million%20classifications.
https://www.ox.ac.uk/public-affairs/media-coverage/media-guidance/case-studies/case-study-galaxy-zoo#:~:text=In%20the%2014%20months%20the%20site%20was%20up%20Galaxy%20Zoo,make%20over%2060%20million%20classifications.
https://www.ox.ac.uk/public-affairs/media-coverage/media-guidance/case-studies/case-study-galaxy-zoo#:~:text=In%20the%2014%20months%20the%20site%20was%20up%20Galaxy%20Zoo,make%20over%2060%20million%20classifications.
https://www.ox.ac.uk/public-affairs/media-coverage/media-guidance/case-studies/case-study-galaxy-zoo#:~:text=In%20the%2014%20months%20the%20site%20was%20up%20Galaxy%20Zoo,make%20over%2060%20million%20classifications.
https://www.zooniverse.org/projects/humphrydavy/davy-notebooks-project
https://www.zooniverse.org/projects/humphrydavy/davy-notebooks-project


D. J. Ellis et al. 23:9

3 Dental Disease Detection. URL: https://www.zooniverse.org/projects/huhui/
dental-disease-detection.

4 Publications. URL: https://www.zooniverse.org/about/publications.
5 Zooniverse. URL: https://www.zooniverse.org/.
6 David L. Applegate, Robert E. Bixby, Vašek Chvátal, and William J. Cook. The Traveling

Salesman Problem: A Computational Study. Princeton University Press, 2007.
7 John Jouis Bentley. Fast algorithms for geometric traveling salesman problems. ORSA Journal

on Computing, 4(4):390–392, 1992. doi:10.1287/ijoc.4.4.387.
8 Jon Louis Bentley. Experiments on traveling salesman heuristics. In Proceedings of the First

Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’90, page 91–99, USA, 1990.
Society for Industrial and Applied Mathematics.

9 Leonora Bianchi, Luca Maria Gambardella, and Marco Dorigo. An ant colony optimization
approach to the probabilistic traveling salesman problem. In International Conference on
Parallel Problem Solving from Nature, volume 2439, pages 883–892. Springer Berlin Heidelberg,
2002. doi:10.1007/3-540-45712-7_85.

10 Norman L. Biggs, E. Keith Lloyd, and Robin J. Wilson. Graph Theory 1736-1936. Clarendon
Press, 1996.

11 Robert G Bland and David F Shallcross. Large travelling salesman problems arising from ex-
periments in x-ray crystallography: A preliminary report on computation. Operations Research
Letters, 8(3):125–128, 1989. URL: https://www.sciencedirect.com/science/article/pii/
0167637789900370, doi:https://doi.org/10.1016/0167-6377(89)90037-0.

12 Connor Chase, Harrison Chen, Alex Neoh, and Maximum Wilder-Smith. An evaluation of the
traveling salesman problem, 2020. URL: http://hdl.handle.net/20.500.12680/8g84mp499.

13 Kenneth Steiglitz Christos H. Papadimitriou. Combinatorial Optimization: Alogrithms and
Complexity. Dover Publications, 1982.

14 William J. Cook. In Pursuit of the Traveling Salesman: Mathematics at the Limits of
Computation. Princeton University Press, 2011. doi:10.1515/9781400839599.

15 G. Dantzig, R. Fulkerson, and S. Johnson. Solution of a large-scale traveling-salesman
problem. Journal of the Operations Research Society of America, 2(4):393–410, 1954. URL:
http://www.jstor.org/stable/166695.

16 M. Dorigo and L.M. Gambardella. Ant colony system: a cooperative learning approach to the
traveling salesman problem. IEEE Transactions on Evolutionary Computation, 1(1):53–66,
1997. doi:10.1109/4235.585892.

17 Paul Erdős. Some of my favourite unsolved problems. Cambridge University Press, 1990.
doi:10.1017/CBO9780511983917.039.

18 Federico Greco. Traveling Salesman Problem. InTech, 2008.
19 John Grefenstette, Rajeev Gopal, Brian Rosmaita, and Dirk Van Gucht. Genetic algorithms

for the traveling salesman problem. In Proceedings of the first International Conference on
Genetic Algorithms and their Applications, volume 160, pages 160–168. Lawrence Erlbaum,
1985.

20 Gregory Gutin, Anders Yeo, and Alexey Zverovich. Traveling salesman should not be
greedy: domination analysis of greedy-type heuristics for the tsp. Discrete Applied Math-
ematics, 117(1):81–86, 2002. URL: https://www.sciencedirect.com/science/article/pii/
S0166218X01001950, doi:https://doi.org/10.1016/S0166-218X(01)00195-0.

21 Keld Helsgaun. An effective implementation of the lin–kernighan traveling salesman heur-
istic. European Journal of Operational Research, 126(1):106–130, 2000. URL: https://www.
sciencedirect.com/science/article/pii/S0377221799002842, doi:https://doi.org/10.
1016/S0377-2217(99)00284-2.

22 Gili Kalai. The Erdős discrepancy problem has been solved
by Terence Tao. URL: https://polymathprojects.org/2015/09/22/
the-erdos-discrepancy-problem-has-been-solved-by-tao/.

CVIT 2016

https://www.zooniverse.org/projects/huhui/dental-disease-detection
https://www.zooniverse.org/projects/huhui/dental-disease-detection
https://www.zooniverse.org/about/publications
https://www.zooniverse.org/
https://doi.org/10.1287/ijoc.4.4.387
https://doi.org/10.1007/3-540-45712-7_85
https://www.sciencedirect.com/science/article/pii/0167637789900370
https://www.sciencedirect.com/science/article/pii/0167637789900370
https://doi.org/https://doi.org/10.1016/0167-6377(89)90037-0
http://hdl.handle.net/20.500.12680/8g84mp499
https://doi.org/10.1515/9781400839599
http://www.jstor.org/stable/166695
https://doi.org/10.1109/4235.585892
https://doi.org/10.1017/CBO9780511983917.039
https://www.sciencedirect.com/science/article/pii/S0166218X01001950
https://www.sciencedirect.com/science/article/pii/S0166218X01001950
https://doi.org/https://doi.org/10.1016/S0166-218X(01)00195-0
https://www.sciencedirect.com/science/article/pii/S0377221799002842
https://www.sciencedirect.com/science/article/pii/S0377221799002842
https://doi.org/https://doi.org/10.1016/S0377-2217(99)00284-2
https://doi.org/https://doi.org/10.1016/S0377-2217(99)00284-2
https://polymathprojects.org/2015/09/22/the-erdos-discrepancy-problem-has-been-solved-by-tao/
https://polymathprojects.org/2015/09/22/the-erdos-discrepancy-problem-has-been-solved-by-tao/


23:10 Open-source TSP

23 Anna R. Karlin, Nathan Klein, and Shayan Oveis Gharan. A (slightly) improved approximation
algorithm for metric TSP. In Proceedings of the 53rd Annual ACM SIGACT Symposium
on Theory of Computing, page 32–45. Association for Computing Machinery, 2021. doi:
10.1145/3406325.3451009.

24 Gözde Kizilateş and Fidan Nuriyeva. On the nearest neighbor algorithms for the traveling
salesman problem. In Advances in Computational Science, Engineering and Information
Technology, pages 111–118. Springer, 2013.

25 B Korte. Applications of combinatorial optimization. In talk at the 13th International
Mathematical Programming Symposium, Tokyo, 1988.

26 Pedro Larranaga, Cindy M. H. Kuijpers, Roberto H. Murga, Inaki Inza, and Sejla Dizdarevic.
Genetic algorithms for the travelling salesman problem: A review of representations and
operators. Artificial intelligence review, 13(2):129–170, 1999.

27 John D. Litke. An improved solution to the traveling salesman problem with thousands of
nodes. Commun. ACM, 27(12):1227–1236, dec 1984. doi:10.1145/2135.2141.

28 Jean-Yves Potvin. Genetic algorithms for the traveling salesman problem. Annals of Operations
Research, 63(3):337–370, 1996.

29 Alexander Schrijver. On the history of combinatorial optimization (till 1960). In K. Aardal,
G.L. Nemhauser, and R. Weismantel, editors, Discrete Optimization, volume 12 of Handbooks
in Operations Research and Management Science, pages 1–68. Elsevier, 2005. doi:10.1016/
S0927-0507(05)12001-5.

30 Kenneth Steiglitz and Peter Weiner. Some improved algorithms for computer solution of
the travelling salesman problem. In 6th Annual Allerton Conference on Circuit and Systems
Theory, 1968.

31 Terence Tao. The Erdős discrepancy problem. Discrete Analysis, pages 1–29. doi:10.19086/
da.609.

32 Terence Tao. The logarithmically averaged Chowla and Elliott conjectures for two-point correla-
tions; the Erdos discrepancy problem. URL: https://terrytao.wordpress.com/2015/09/18/
the-logarithmically-averaged-chowla-and-elliott-conjectures-for-two-point-correlations-the-erdos-discrepancy-problem/.

33 Alan Mathison Turing. COMPUTING MACHINERY AND INTELLIGENCE. Mind,
LIX(236):433–460, 1950. arXiv:https://academic.oup.com/mind/article-pdf/LIX/236/
433/30123314/lix-236-433.pdf, doi:10.1093/mind/LIX.236.433.

https://doi.org/10.1145/3406325.3451009
https://doi.org/10.1145/3406325.3451009
https://doi.org/10.1145/2135.2141
https://doi.org/10.1016/S0927-0507(05)12001-5
https://doi.org/10.1016/S0927-0507(05)12001-5
https://doi.org/10.19086/da.609
https://doi.org/10.19086/da.609
https://terrytao.wordpress.com/2015/09/18/the-logarithmically-averaged-chowla-and-elliott-conjectures-for-two-point-correlations-the-erdos-discrepancy-problem/
https://terrytao.wordpress.com/2015/09/18/the-logarithmically-averaged-chowla-and-elliott-conjectures-for-two-point-correlations-the-erdos-discrepancy-problem/
http://arxiv.org/abs/https://academic.oup.com/mind/article-pdf/LIX/236/433/30123314/lix-236-433.pdf
http://arxiv.org/abs/https://academic.oup.com/mind/article-pdf/LIX/236/433/30123314/lix-236-433.pdf
https://doi.org/10.1093/mind/LIX.236.433


D. J. Ellis et al. 23:11

A Comparisons

10 20 30 40 50 60 70 80 90 100

5

10

15

20

25

30

35

40

Number of nodes

Av
er

ag
e

im
pr

ov
em

en
t

(%
)

Node Swap
2-opt
3-opt

Figure 4 Average tour improvement of MF algorithm after different optimisations.

10 20 30 40 50 60 70 80 90 100

5

10

15

20

25

30

35

40

Number of nodes

Av
er

ag
e

im
pr

ov
em

en
t

(%
)

Node Swap
2-opt
3-opt

Figure 5 Average tour improvement of NN algorithm after different optimisations.

CVIT 2016



23:12 Open-source TSP

10 20 30 40 50 60 70 80 90 100

5

10

15

20

25

30

35

40

Number of nodes

Av
er

ag
e

im
pr

ov
em

en
t

(%
)

Node Swap
2-opt
3-opt

Figure 6 Average tour improvement of DENN algorithm after different optimisations.


	1 Introduction
	1.1 What the Travelling Salesman Problem is
	1.2 Applications of TSP
	1.3 Crowdsourcing Problems

	2 Existing Heuristics
	2.1 Genetic algorithms
	2.2 Nearest Neighbour
	2.2.1 Double-Ended Nearest Neighbour

	2.3 Multiple Fragment

	3 Existing Optimisations
	3.1 2-opt
	3.1.1 Complete 2-opt

	3.2 3-opt
	3.3 Node swapping
	3.4 Ant colony optimisation

	4 The Aim
	4.1 The idea
	4.2 Why crowdsource
	4.3 The groundwork

	5 Artefact Structure
	5.1 Looking to the future

	A Comparisons

