
Simulating Echolocation Through the

Use of Slow-light Radiosity

By Daniel John Ellis - UP940148

Supervised by Dr. Jacek Kopecký

School of Computing

Final Year Engineering Project

PJE40

May 6, 2022

Abstract

Echolocation is a heavily used navigational technique utilised by many dif-

ferent creatures. Despite being so widely used, there are very few visual

resources that demonstrate how those that use echolocation perceive the

world around them. This project follows the development of a web-based

application which aims to serve as a visual aid to help people better un-

derstand the concept of echolocation, and how it can be used to explore

one’s surroundings. This is done by using a modified version of the radiosity

global illumination algorithm in which the speed of light is slowed down to

the speed of sound. This report details how the system is designed and

how 3D scenes were created to imitate the flight of a bat in the wild. As

an educational tool, the success of the system is still undetermined, and

the testing of the system revealed some performance issues that will need

addressing before it can be deployed as a working product. There are also

some recommendations for future improvements that can be made to the

system which were not implemented here due to time constraints.

Consent to share

I consent for this project to be archived by the University Library and

potentially used as an example project for future students.

i

Table of Contents

Abstract i

Acknowledgements xi

1 Introduction 1

1.1 Aim . 2

1.2 Objectives . 2

1.3 Report structure . 3

2 Background 5

2.1 How light works . 5

2.2 Radiosity . 6

2.2.1 What it does . 7

2.2.2 How it works . 8

2.2.3 Useful terms . 10

3 Literature Review 11

3.1 How sound works . 11

3.1.1 Acoustic attenuation and light absorption 12

3.2 Echolocation . 14

3.2.1 In bats . 14

3.2.2 In sonar . 15

4 Project Management and Methodology 17

4.1 The Explorative method . 18

4.1.1 Requirements elicitation 18

4.1.2 Development process 19

4.2 Project Management . 20

ii

5 Requirements 22

5.1 Must Have . 22

5.2 Should Have . 23

5.3 Could Have . 24

5.4 Won’t Have . 24

6 Design 26

6.1 User interface . 26

6.2 Scene design . 26

6.2.1 Trees . 27

6.2.2 Model placement . 27

6.3 Exitance files . 27

6.4 Command line system . 28

6.5 Summary . 28

7 Implementation 29

7.1 Development setup . 29

7.2 Light sources . 30

7.2.1 Invisible lights . 30

7.2.2 Lights on timers . 32

7.3 Flight path . 32

7.3.1 Parametric equations 32

7.3.2 Placing objects along the path 33

7.3.3 Moving the camera along the path 33

7.4 JSON trees . 34

7.4.1 Fixing branches . 34

7.4.2 Loading improvements 36

7.5 Exitance files . 37

7.5.1 Command line system 37

7.5.2 File compression . 37

7.6 Summary . 38

8 Testing 39

8.1 System setup . 39

8.1.1 Testing machine . 39

iii

8.1.2 Testing browser . 40

8.2 Tests done . 40

8.3 Issues that arose during testing 40

8.3.1 Moving camera along a path #1 40

8.3.2 Loading STL tree . 41

8.3.3 Browser exitance exporting and importing 41

9 Evaluation 43

9.1 Evaluation against requirements 43

9.1.1 Requirements that weren’t met 44

9.2 User feedback . 45

9.2.1 Results analysis . 45

9.3 Success against the project’s aim 47

9.4 Critique . 48

9.4.1 Approach . 48

9.4.2 Research . 49

9.4.3 Model suitability . 49

10 Conclusions 51

10.1 Future considerations . 52

10.1.1 Different shape light sources 52

10.1.2 Improved tree loading 52

10.1.3 Remove the system from the browser 53

10.1.4 Adjusting the radiosity model 53

10.1.5 Adding sound . 54

10.2 Personal reflection . 54

References 56

A Ethics Certificate 61

B Project Initiation Document 64

C Source Code 71

D Small implementations 72

iv

D.1 Speeding up loops . 72

D.2 Image saving . 73

D.3 Poisson disc sampling . 74

E All tests carried out 75

E.1 Invisible light sources . 75

E.1.1 Scene setup . 75

E.1.2 Expectations . 76

E.1.3 Results . 77

E.2 Activating lights on timers . 77

E.2.1 Scene setup . 77

E.2.2 Expectations . 78

E.2.3 Results . 78

E.3 Flight path . 78

E.3.1 Placing objects along path 78

E.3.2 Moving camera along path 80

E.4 Loading STL tree . 81

E.4.1 Scene setup . 81

E.4.2 Expectation . 81

E.4.3 Observation . 82

E.5 Loading JSON tree . 83

E.5.1 Scene setup . 83

E.5.2 Expectations . 83

E.5.3 Observation . 83

E.6 Faster loading of JSON tree 83

E.6.1 Scene setup . 83

E.6.2 Expectations . 83

E.6.3 Results . 84

E.7 Browser exitance exporting and importing 84

E.7.1 Basic scene . 84

E.7.2 Complex scene . 85

E.8 Command line exitance generation 85

E.8.1 Basic scene . 85

E.8.2 Complex scene . 85

v

E.9 Exitance file compression . 85

E.9.1 Lossless RLE compression 85

E.9.2 Lossy compression . 86

E.10 Deployment for testing . 86

E.10.1 Discoveries . 87

F Full evaluation of successful requirements 88

F.1 Must Have . 88

F.2 Should Have . 89

F.3 Could Have . 90

G Participant Feedback Form 91

H Participant Feedback Responses 100

I Simulation Differences From Compression 108

J Code Comparison 112

vi

List of Tables

1.1 Report structure. 4

2.1 Useful radiosity terms. 10

7.1 Number of surfaces needed for the branches at different width

cutoff values. 36

8.1 Unit testing table. 40

9.1 All project requirements and whether or not they were met. . 44

D.1 Time taken to load default tree when using different loops. . 72

E.1 Time taken to load the default tree with branches trimmed . 84

E.2 File size (KB) of exitance data under different compression

settings. 86

vii

List of Figures

2.1 Light flow in a room with a single torch. 6

2.2 Shrek scene when lit with local and global illumination. . . . 7

2.3 Simple room scene when room is not subdivided, and when

subdivided 20 times. 9

2.4 Simple black and white scene after different iterations of the

radiosity algorithm. 9

2.5 Radiosity changes becoming less noticeable after different it-

erations. 10

3.1 The absorption coefficient, α, in a variety of semiconductor

materials at 300K as a function of the vacuum wavelength of

light. 13

3.2 Sound absorption coefficients of various traditional materials. 13

4.1 Exploratory style of software development. 18

4.2 Software artefact development plan. 21

7.1 Co-ordinate system before and after +90◦ rotation around

x-axis. 34

7.2 Default tree branch structure before and after fixing branch

construction. 35

7.3 Branch structure narrowing as start and end approach same

z value. 35

7.4 Tree model after reducing the number of branches. 36

9.1 User feedback with crash information. 46

viii

10.1 Conversion of two trunk sections into one whole surface. Dif-

ferent coloured vertices equate to different surfaces that they

form. 53

D.1 Poisson Disk Sampling grid. Pink cell is the container for

the point. Red grid shows the only cells that need to be

considered when positioning other points. 74

E.1 Scene setup, for Invisible light sources test. 76

E.2 Result of test when isLight = true at time step 8. 77

E.3 Result of test when isLight = false at time step 8. 77

E.4 Expected curve, modelled in GeoGebra’s 3D Calculator. . . . 79

E.5 Flight path curve output by simulation. 79

E.6 Simulation output at step 0 during camera motion tests. . . . 80

E.7 Tree with default settings rendered in OpenSCAD. 81

E.8 Chrome’s ’Out of Memory’ error screen. 82

E.9 First attempt JSON tree. 84

E.10 Forest scene before and after opening a different coloured scene. 87

I.1 The ’TEST: Invisible light source’ scene at time step 7,

with different levels of compression. 109

I.2 The ’Forest’ scene at time step 118, with different levels of

compression. 110

I.3 Absolute differences between uncompressed exitance data and

the fully compressed exitance data. Created by overlaying

images in Adobe’s Photoshop and using the ’Difference’ blend

mode (Adobe, 2022). 111

ix

List of Code Listings

7.1 Example activeTime values. 32

7.2 Fixed camera position assignment. 34

J.1 Comparison of generator function versus returning a list when

getting environment vertices. 113

x

Acknowledgements

Thank you to:

My supervisor, Dr. Jacek Kopecký, for providing constant support and guid-

ance throughout the course of this project, and my moderator, Mark Venn,

who provided support and encouragement when this project was demon-

strated to him.

My friends and family for putting up with me whilst I’ve been working on

this project, especially my housemates: Kirsty, Tom, Lily, and Misia.

My course leaders, Dr. Matt Dennis, Dr. Jacek Kopecký, and Dr. Rich

Boakes for always providing support in all areas of academic life.

All of the anonymous participants who provided feedback on the software

artefact, which gave useful insight and helped to fuel my evaluation.

xi

Chapter 1

Introduction

”Because we rely largely on vision to perceive the world, we find

it difficult to comprehend the challenges faced by organisms that

use other senses for perception.”

Jones (2005)

As stated by Jones (2005), we use our vision as a main method of perceiv-

ing the world around us. Given that over a thousand species around the

world, including bats, toothed whales, and some people, use echolocation

to navigate their surroundings and find food (Langley, 2021). Developing

an understanding of how this navigational system works will help us to (A)

better understand the habits of creatures that use it, and (B) potentially

improve accessibility for blind people that utilise it.

Echolocation has been studied by countless people since the term was first

used by Griffin (1944). The principles of echolocation are also used in many

modern systems such as sonar scanning and fetal ultrasound scans (JGuerra,

2019). However despite the in-depth studies around the field, I’m unable

to find any resources that visualise how echolocation might be perceived by

the creatures that use it.

Because of the lack of resources that can be found to visualise this intricate

system, this project aims to fill this gap by using a slowed down global

illumination algorithm called radiosity to simulate how the information from

1

echolocation might be perceived by a bat in flight. The system will be

built upon the existing Slow-light Radiosity system created by Kopecký and

Mattone (2020) which implements a slowed down version of the radiosity

algorithm in an array of 3D environments.

1.1 Aim

The primary aim of this project is to create a web application that will allow

users to view a simulation of how a bat might perceive the information it

receives from echolocation, with a set of YouTube videos of the scene/s

implemented to act as an accompaniment to the system. The basis behind

this project is that it could be used in an educational environment to provide

a better understanding of how echolocation works.

1.2 Objectives

The objectives that will be needed to meet the project aims are:

1. Collect information about how the existing system operates.

2. Develop an understanding of the radiosity algorithm.

3. Review literature relating to:

• The characteristics of sound waves.

• The principles of a bat’s echolocation system.

4. Construct a scene of a forest to act as the bat’s habitat.

(a) Successfully import tree models into the scene.

(b) Use poisson disc sampling to generate a natural looking distribu-

tion of trees.

5. Devise a way of imitating echolocation pulses along a bat’s path.

(a) Create a flight path for the bat and a camera that follows that

path.

2

(b) Find a way of setting initial exitance at multiple stages in the

simulation.

(c) Create a means of hiding light sources from the viewer.

6. Continuously test features of the system.

7. Create videos of the scene/s and post to YouTube.

8. Gather user feedback regarding the usability and usefulness of the

system.

9. Evaluate successes, failings, and limitations of the project.

10. State ideas and improvements for future development.

1.3 Report structure

Table 1.1 shows an overview of this report’s structure along with the topics

that will be discussed. Chapters 1-3 detail the problem topic and the re-

search surrounding it. Chapters 4-8 cover the details about how the software

artefact was created. Finally chapters 9 & 10 bring the project to a close

by evaluating the artefact and the methods used to develop it, and then

suggesting future modifications that could be made.

3

Chapter Description

1 Introduction Initial overview of the project as well as

it’s aims and objectives

2 Background An detailed explanation of how the

radiosity algorithm works

3 Literature Review Review of available literature relevant to

the project’s topic

4 Project Management

and Methodology

Discussion and justification of this

project’s chosen methodology

5 Requirements Specification of the requirements laid out

for the project

6 Design Explanation of the design choices made

throughout and their justifications

7 Implementation Detailed overview of the steps taken to

implement the chosen design

8 Testing Statement of the testing carried out and

discussion of results

9 Evaluation Discussion of the project’s success, and

critique of the steps taken throughout

10 Conclusions The project’s final notes and future

considerations

Table 1.1: Report structure.

4

Chapter 2

Background

This chapter will go over some background information about how the ra-

diosity algorithm works that will help provide a better understanding for

the rest of the report.

2.1 How light works

For the purposes of this project, when talking about light, it is in reference

to the range electromagnetic radiation that exists between Ultraviolet (UV)

light, and Infrared (IR) light, better known as ”visible light”.

If you imagine a dark room, with a directed light such as a torch in the

centre of it, pointed upwards, and no other light sources in the room. When

the torch is turned off, the room is pitch black, and nothing can be seen.

Now imagine turning the torch on. Light flows from the torch, up towards

the ceiling, and then that light is reflected from the ceiling, around the room

and towards the floor (Fig. 2.1).

This is how we perceive light, and it all happens near instantaneously, at the

speed of light. The amount of light reflected off each surface in the room

is dependent on each surface’s reflectance, and in the real world we have

surfaces like mirrors which can direct the light that hits them (“Mirrors”,

n.d.).

5

Figure 2.1: Light flow in a room with a single torch.

2.2 Radiosity

Radiosity, as a concept is far too detailed to explain in full depth within

this report, with Ashdown (1994) taking some 500 pages to explain it in one

book. Hopefully by the end of this section, you, the reader, will have a better

understanding of the basic principles underlying the radiosity algorithm that

will be used in this project.

The radiosity algorithm was first created as a mathematical tool that could

render the inside of an empty box (Ashdown, 1994, p. 1; Goral et al., 1984).

Since it’s creation, the radiosity algorithm has been deployed in many com-

mercially available products such as 3ds Max (“Modeling Global Illumina-

tion with Radiosity”, 2018), and the Enlighten game engine (jun.yoshino,

2021).

6

(a) Local illumination.

(b) Global illumination.

Figure 2.2: Shrek scene when lit with local and global illumination.

Source: Tabellion (2010)

2.2.1 What it does

The radiosity algorithm is a global illumination algorithm, which means it

models light in a scene where the light reflected by a surface A is dependent

on the light coming directly from a light source, as well as the light reflected

from a surface B towards A (Fig. 2.2b). This is different to a local illu-

mination algorithm such as the Phong illumination model, which does not

take into account the light reflected from a surface B towards A, but only

considers light coming from the source directly towards the surface (Fig.

2.2a).

7

The two primary forms of reflection in 3D graphics are specular and diffuse;

ambient reflection is also used, however ambient light is a crude model of

diffuse which does not consider the distance to, or angle of incident of,

the light in the scene (BBeck1, 2016, para. 2; “3D Common Properties”,

n.d.). Specular reflection is the type of reflection observed in most standard

mirrors, where the light hitting the surface will be perfectly reflected, which

is to say that the angle of incidence is the same as the angle of reflection.

Diffuse reflection contrasts this, which means that the light which hits the

surface will be scattered in many different directions.

All surfaces being lit using the radiosity algorithm are modelled with Lam-

bertian reflection, which is a specific form of diffuse reflection where the light

that hits the surface will be scattered equally in all directions (ideal diffuse)

(Ashdown, 1994, p. 8-9). Because all surfaces are modelled with Lamber-

tian reflection, the radiosity algorithm is not useful for lighting scenes with

shiny/glossy objects such as mirrors. Modelling light on these surfaces would

require some algorithm that utilises specular reflections such as ray-tracing

(NVIDIA, n.d.) or path-tracing (Caulfield, 2022).

2.2.2 How it works

Every surface in a scene is subdivided into a mesh of patches. These patches

act as smaller surfaces which allow light to be displayed with a higher level

of detail (Fig. 2.3).

Every surface (and every patch by proxy) has two main properties: re-

flectance, which is a measure of the amount of light that the surface will re-

flect; and emittance, which describes the light emitted by the surface initially

(initial radiant exitance). Both of these attributes are commonly stored us-

ing distinct RGB channels.

To begin with, every patch Ei has a form factor calculated between itself and

every other patch Ej . This form factor Fij , in layman’s terms, represents

the proportion of Ei’s view, that contains Ej . Because all surfaces exhibit

Lambertian reflection, the proportion of Ei’s view that contains Ej will be

the same as the proportion of light emitted from Ei that Ej receives.

8

(a) No subdivision. (b) Subdivided 20 times.

Figure 2.3: Simple room scene when room is not subdivided, and when subdivided

20 times.

Source: Kopecký and Mattone (2020)

(a) Iteration 1. (b) Iteration 2. (c) Iteration 3. (d) Iteration 4. (e) Iteration 16.

Figure 2.4: Simple black and white scene after different iterations of the radiosity

algorithm.

Source: Elias (2000)

Radiosity works iteratively. In every iteration, every patch that can see any

light source receives some of the light that is being emitted by all the sources

that it can see. When a patch receives light from a source, it becomes a light

source itself, and then it can be used as a light source for other patches in

future iterations.

This iterative process will continue on, with patches reflecting light to one

another as many times as required (Fig. 2.4). In static scenes, with constant

light sources that don’t change in any way, this iterative process will continue

to make small changes to the light in the scene until the changes become

so insignificant that the lighting appears to have stabilised completely (Fig.

2.5).

9

(a) Iteration 30. (b) Iteration 60. (c) Iteration 90.

Figure 2.5: Radiosity changes becoming less noticeable after different iterations.

Source: Kopecký and Mattone (2020)

2.2.3 Useful terms

Some useful terms used when talking about radiosity are named and ex-

plained below.

Term Explanation

Exitance The amount of light emitted at a given time.

Emittance The ”initial radiant exitance”. The amount of light

initially emitted from a surface.

Reflectance The amount of light reflected by a surface.

Form factor The proportion of light emitted by one patch which

is received by another patch.

Table 2.1: Useful radiosity terms.

10

Chapter 3

Literature Review

3.1 How sound works

Sound is a longitudinal wave that exists in some medium, and these waves

cause fluctuations in pressure that cause vibrations, which our ears detect,

and our brains perceive them as sound as we know it (Young et al., 2012,

p. 510).

When a sound wave meets the interface of two media, a portion of the wave

will be reflected, whilst another portion of the wave will permeate through

the new medium. The amount of the wave that gets reflected is determined

by the diversity (impedance ratio) of the two media. For example, if the

sound wave travels through the air, and then reaches a concrete barrier,

because of the difference between concrete and air, most of the sound wave

will be reflected, and very little will be absorbed (“Reflection, Refraction,

and Diffraction”, n.d.).

As sound travels through any medium, some of the sound is lost due to

absorption. This is because sound is a vibration of the atoms that make up

a material, and due to molecular collisions that occur within that material,

some the sound wave’s kinetic energy is converted to heat energy (Kurtus,

n.d.). Some materials have been designed specifically to absorb sound waves,

as a form of sound insulation. The design of these materials has to take

11

into account multiple factors that affect the sound absorption coefficient of

the material, such as fibre size, thickness, porosity, and density (Seddeq,

2009).

3.1.1 Acoustic attenuation and light absorption

Acoustic attenuation is the measure of a sound wave’s energy loss as a

function of depth of a material (Eq. 3.1) (Mischi et al., 2014, p. 364)

I(z) = Ite
−αz (3.1)

Where It is the transmitted acoustic intensity, α is the attenuation coefficient,

and z is the covered distance.

Acoustic attenuation is incredibly similar to Lambert’s law of absorption for

light waves, which is (Mazda, 1993, Sect. 7.10.2.1)

I = Ioe
−Kx (3.2)

Where I and Io are the resulting and initial intensity respectively,

K is the absorption coefficient, and x is the distance covered.

As can be seen in figure 3.1, the absorption coefficient of light in differ-

ent materials trends downwards as the wavelength of the light increases.

As wavelength is inversely proportional to frequency (Eq. 3.3), it can be

said that the absorption coefficient of light trends downwards as the light

frequency decreases.

Frequency(Hz) =
Wave V elocity(ms−1)

Wavelength(m)
(3.3)

Figure 3.2 shows the sound absorption (acoustic attenuation) coefficients of

different materials for different frequencies of sound. The general trend of

this relation is that the sound absorption coefficient increases as the fre-

quency of the sound wave increases, save for a few outlying cases such as

Epoxy resin from 0 to ≈ 700Hz.

12

Figure 3.1: The absorption coefficient, α, in a variety of semiconductor materials

at 300K as a function of the vacuum wavelength of light.

Source: Honsberg and Bowden (2019)

Figure 3.2: Sound absorption coefficients of various traditional materials.

Source: Kumar and Lee (2019, Fig. 1)

13

Given the similarity between these attenuation and absorption rates, whilst

there are many other factors that may impact the rate at which a wave loses

it’s intensity as it travels through a medium, a general assumption can be

made to say that as the frequency of a wave increases, so does the absorp-

tion/attenuation coefficient applied to its rate of decay, and as such, waves

with a higher frequency decay faster when travelling through a medium than

waves with a lower frequency.

3.2 Echolocation

Echolocation, otherwise known as bio sonar, is a process used by animals to

sense their environment when visual input isn’t an option, for example if the

environment is too dark, if the animal has no eyes, or is blind. Echolocation

works by creating a sound and receiving the echoes that return from the

sound waves reflecting off objects. By comparing the sound waves created,

to the ones received, the brain can produce images to interpret the animal’s

surroundings (Jones, 2005).

Echolocation, as a term, was first coined by Donald R. Griffin in 1944 in a

scientific journal. He came up with it because he wanted a term for how

bats and blind persons navigate their surroundings using echoes (Griffin,

1944).

3.2.1 In bats

Bats use echolocation to perceive their surroundings and hunt for prey. The

range of frequencies for bat echolocation calls are between approximately

11kHz and 212kHz, with most insect-eating (insectivorous) bats using fre-

quencies between 20kHz and 60kHz for their calls (Jones & Holderied, 2007).

The limit of a normal human’s hearing is bounded between approximately

20 to 20,000Hz (0.02kHz to 20kHz) with the upper bound of this range de-

creasing somewhat with age (Purves et al., 2018, p. 282). This puts the

majority of bat echolocation calls in the ultrasonic frequency range (Berg,

2017).

14

Sound travels at a constant speed of≈ 340ms−1, and because of this bats can

determine how far away objects are based on the difference in time between

their emitting of the call and the returning of the echo from the surface of

an object (Russ, 2013). The reason for bats’ use of ultrasonic frequency

comes from the size of their insect prey. The intensity of a returning echo

diminishes a lot when the wavelength of the emitted call is greater than

the size of the insect, so in order for a bat to effectively detect an insect’s

presence, the wavelength of the call must be equal to or less than the size of

the insect (Russ, 2013). Bats commonly hunt mosquitoes for prey (Wilson,

1997), and with mosquitoes ranging between 2-19mm in length (Service,

2012, p. 2), the frequency required to detect a mosquito ranges from 170kHz

to 17.895kHz (Eq. 3.3).

When a bat uses a higher frequency call, it will get more detail about the

scene in front of it because, the higher the frequency of the call, the more

directional it is. This means that the returning echoes are more concentrated

to one area and as such they can provide a more accurate picture of their

prey (Russ, 2013).

3.2.2 In sonar

Sonar (sound navigation and ranging) is commonplace in boats and sub-

marines (Allwood, 2021), and has been since World War I. The fist Sonar

type device was invented in 1906 by Lewis Nixon as a method of detecting

icebergs. After this, because of the threats posed by submarines in WWI,

the interest in Sonar technology was increased, with the first passive sub-

marine detecting Sonar being created in 1916 and the first active Sonar

system being created in 1918 by British and U.S. scientists (Bellis, 2020;

The Editors of Encyclopedia Britannica, 2019).

Despite these being the earliest known developments of Sonar systems, the

first recorded use of the technique dates back almost 450 years prior with

Leonardo da Vinci who, in 1490, wrote ”If you cause your ship to stop, and

place the head of a long tube in the water and place the outer extremity in

your ear, you will hear ships at a great distance from you.” (Fahy & Walker,

1998, p. 375).

15

Sonar is classified into two categories: passive Sonar, which is where sounds

are heard coming from external sources, and active Sonar, which is where

a sound is generated, and the reflected echoes are detected. What da Vinci

wrote about was passive sonar, as he was listening for sounds from other

ships, whilst active sonar is seen in Side-scan Sonar systems that are often

used to map the sea floor (Geoscience Australia, n.d.).

16

Chapter 4

Project Management and

Methodology

Multiple well-established methodologies were considered for use, however

none of these considered methodologies were chosen due to the belief that

they would not be beneficial to this project.

Due to the exploratory nature of the project, requirements gathering hap-

pens at multiple stages throughout it’s duration, as this sort of project has

not been attempted before in any form that I can find, and this meant that

a list of complete requirements could not be formulated at the beginning.

In light of this, the Waterfall method was discounted due to it’s rigid struc-

ture not allowing for this discovery of new requirements once that stage has

passed (Royce, 1970, p. 329).

Whilst considering the Agile methodologies, the recurring theme found within

them was the fact that their basic principles are tailored towards projects

with customers/clients/sponsors with statements such as ”. . . harness change

for the customer’s competitive advantage” and ”Our highest priority is to

satisfy the customer through. . . ” (“Principles behind the Agile Manifesto”,

2001). As this project has no customers/clients/sponsors, the workflow

doesn’t need to be focused around customer input and satisfaction.

17

Figure 4.1: Exploratory style of software development.

Source: itskawal2000 and surbhikumaridav (2020)

4.1 The Explorative method

As a result of finding no established methodologies which seem to suit

the needs of this project, a methodology was devised specifically for this

project, based on insight gained from previous projects that have been un-

dertaken.

The overall process of the methodology is not overly dissimilar to the Ex-

ploratory style of software development detailed by itskawal2000 and surb-

hikumaridav (2020) (Fig. 4.1). With the main differences being that this

project has no customer and so the ”Initial briefing by customer” is removed,

and instead requirements are added when discovered throughout develop-

ment.

4.1.1 Requirements elicitation

Before the development process could begin, some requirements elicitation

was done through: observing the existing system at work, changing small

parts of it to see how it operated, and figuring out how the different fea-

tures of the system interact with one another. This allowed some cursory

requirements to be made which could be used to begin development.

As the initial requirements primarily serve to give an idea of where devel-

18

opment should begin, more requirements are bound to be discovered during

the other phases of development. In contrast with the Waterfall method, re-

quirements that are discovered later in development are not just documented

for reference when developing a subsequent system, but are instead docu-

mented alongside the existing project requirements, at which point it is left

to the sole developer to re-prioritise the requirements in order to determine

when this new addition should be focused on.

This method of adding more requirements and adjusting the order in which

they will be tackled, whilst it may become overwhelming to do in a large

project, especially one with a team that have to co-ordinate their work effec-

tively and may uncover many additional requirements in quick succession,

it is a method which has been deemed suitable enough for a project of this

scale, with only myself as the developer.

4.1.2 Development process

The implementation of this method appreciates the level of volatility that

can arise when making decisions throughout development as a solo devel-

oper. Without being a part of a team setting, all decisions regarding this

project are decided by myself alone. I can gather some wisdom and guid-

ance from my supervisor and other academic staff, however with the lack

of a team structure with frequent communication, some design choices and

implementation methods may have unforeseen drawbacks due to a lack of

experience with specific technologies.

As a result of this, all phases of the development process are unrestricted in

where they can go next. If a flaw in the design is found after deploying the

system, then the design phase can be revisited without issue.

Overall, this method allows complete freedom in development by removing

the restrictions that can be found in established methodologies. This method

would likely be very unstable and not suitable for larger scale projects re-

quiring more complex architecture such as databases and APIs, or projects

involving a team of developers. However for the scale and complexity of this

project, I have considered it to be an acceptable method to follow.

19

4.2 Project Management

Development projects in business settings usually require developers to pro-

vide regular progress updates to their superior/s, who is often a lead devel-

oper, or the whole development team will meet regularly to discuss progress

made, as it is under Scrum methodology with Scrum meetings. In lieu of

other team members or a superior to report progress to, my frequent su-

pervisor meetings were used as progress reports. These supervisor meetings

allowed this project to receive regular critique and useful insight, as well

as encouraging me to make constant progress without straying too far off

track.

As mentioned prior, in section 4.1.1, requirements were added throughout

the entire development of this project. As these requirements were created,

the development plan changed to accommodate them. The final develop-

ment plan used for this project is shown in figure 4.2.

20

Month: Jan Feb Mar Apr May

Week Ending: 21 28 04 11 18 25 04 11 18 25 01 08 15 22 29 06

Implementation:

Invisible lights

Sequential lights

Camera motion

Scene creation

Set up JSON trees

Speed up tree loading

Change system loops

Exitance export/import

Command line system

Exitance compression

Testing:

Constant unit testing

Final testing and writeup

Feedback:

Create questionnaire

Gather feedback

Demos and submission:

Progress demo

Final submission

Planned work time

Planned overrun

Figure 4.2: Software artefact development plan.

21

Chapter 5

Requirements

Due to this project’s lack of a client and exploratory nature, a decision

was made to gather initial requirements through observation of the existing

system, and doing background research into the field. Later requirements

were then included based on the results of constant testing during develop-

ment.

5.1 Must Have

MH1 - A moving camera on a pre-planned path. (Functional)

In order to simulate the flight of a bat, the camera must be mobile in the

scene. Because exitance values are computed before the animation plays,

each scene’s light sources must be in fixed positions, and the camera must

follow a path that intersects with every light source.

MH2 - Application served on GitHub Pages. (Functional)

The system is served on a static page, which means that it does not need

dedicated server architecture to function. When deploying the system to

users for both feedback gathering and general use post-deployment, GitHub

Pages is a perfect candidate as it is free and it requires no set-up for users

in order to function.

22

MH3 - Pre-loaded exitance data. (Functional)

It became apparent in appendix E.6.3 that scenes with many vertices would

take a large amount of time to load in the browser. Because of this, in order

to allow participants to test the system and give feedback, the exitance

values for all vertices should be computed before deployment and fetched

from a file when the system is in use.

MH4 - Light sources that activate sequentially. (Functional)

In order to have more than one pulse of light per scene, light sources must

have some way of activating when required, and not just at the start of the

scene as it is in the existing system1.

MH5 - New method of storing and loading trees. (Functional)

While testing the ability to load trees from STL form in appendix E.4, it

was identified that Chrome would exceed its memory limit and crash when

loading just one tree in STL form into an empty scene. For this reason, a

different method of storing the models must be devised, so that the scene

can have multiple tree objects contained within it.

5.2 Should Have

SH1 - Command line calculation ability. (Functional)

Because of the memory limitations imposed by browsers, it was discovered

in testing that some scenes were able to load into the browser, however the

page would crash whilst attempting to calculate the exitance values for the

scene (Sect. 8.3.3). Creating a method of calculating and saving exitance

values from the command line will allow more complex scenes to be created

for simulation.

SH2 - Light sources that aren’t visible. (Functional)

Because the light sources are replicating the sound pulses from a bat, they

should not be visible as physical objects in the scene, as this would mean

that the future light sources could be seen by the camera, and would also

be casting shadows in the scene.

1Original system: radiosity/slowrad.js L168-L177

23

https://github.com/portsoc/Slow-light-Radiosity/blob/ea2f61f4b67427691f00d3966aaba0c9821602c2/radiosity/slowrad.js#L168-L177

SH3 - Compressed exitance data files. (Functional) (Extends MH2)

When exporting a complex scene’s exitance data, the JSON file had a size

of 374MB. Pushing this file to a Git repository required the use of Git LFS,

however files using LFS are restricted from being served on GitHub Pages.

Because of this, a method of compressing these files should be used in order

to allow deployment.

5.3 Could Have

CH1 - Minor background noise. (Functional)

Bats in nature are bound to be near other bats. All of which will be using

echolocation for navigation. Because of these other sources of sound, bats

likely experience varying levels of interference to their echolocation.

CH2 - Exportable images. (Functional)

In order to compare the differences in simulation outputs between different

stages of development, a way of exporting the current simulation view to an

image file could prove useful.

CH3 - Exportable animation. (Functional)

Being able to export the simulation output to an animation file would allow

users to view the output, even if they find themselves unable to run the sim-

ulation on their current device, thus enabling the outputs of the simulation

to be helpful to a wider audience.

5.4 Won’t Have

WH1 - Creation of custom scenes and flights. (Functional)

The decision was made not to include the creation of custom scenes and

flights, as creating a 3D scene editor was felt to be too large a task to fall

within the scope of this project, if done well.

24

WH2 - Different colours to illustrate the doppler effect. (Func-

tional)

Allowing for different frequencies of light in the scene would require the

rewriting of a large amount of the initial system, and after having to com-

press exitance files to allow them to be deployed to GitHub Pages in section

7.5.2, the decision was made to only store a single colour channel, thus

making this requirement unachievable in this project.

25

Chapter 6

Design

Because of the exploratory nature of this project, the requirements were

ever-changing, and so the design had to be consistently updated to keep

up with the changes. This chapter will cover the main design choices made

during development.

6.1 User interface

The existing system has a well-formed UI, so the general layout has remained

the same. The only change made was the addition of three new buttons.

One to toggle between the orbital and flight cameras, another to save an

image of the current frame, and a final one to display the help page. These

buttons were added to the existing menu bar in the top left corner so that

the UI wouldn’t become cluttered from additional containers. In keeping

with the existing theme, the buttons had a light coloured backdrop and

used Font Awesome 5 icons (“Font Awesome”, 2020).

6.2 Scene design

Bats have many natural habitats, however the one chosen to model in this

project is the forest. Forest scenes were chosen because the layered detail

that can be found in a forest made it feel like the final animation would be

26

more visually appealing and interesting than if some other scene, such as an

urban setting, had been modelled.

6.2.1 Trees

It was discovered during testing that STL trees were unable to load into

the scene without crashing the browser due to lack of memory (Sect. 8.3.2).

JSON has been chosen as the replacement for STL models as it is well-

suited towards storing complex data structures, and JavaScript has built-in

methods for handling JSON data.

6.2.2 Model placement

To create a realistic forest scene, the tree models needed to be placed with

a natural distribution. After some research to try and figure out how to do

this, the most common result found was Poisson disc sampling. As it is a

well-established algorithm, and more than one layer of it can be used in one

scene with ease, this was the method chosen to position the tree and bush

models. Two different sample sets were used. One was generated for the

tree placements, and another, with a smaller minimum radius, was used for

the bush placements in each scene.

6.3 Exitance files

As per requirement MH31, the exitance data for scenes should be calcu-

lated once and then imported into the system when required. The exi-

tance data for every vertex in the scene, for every time step, is stored

in vertex.futureExitances. Once calculations have been completed, a

large 2D array can be constructed from these futureExitances values, and

the array can be exported to a JSON file. As above with the trees (Sect.

6.2.1), JSON is chosen here because it is suited towards structured data and

JavaScript has functions to handle it.

1MH3 - Pre-loaded exitance data

27

6.4 Command line system

Testing the browser’s ability to export exitance files in appendix E.7, re-

vealed that a new method of calculating the exitance files had to be devised,

as the browser could not be trusted to reliably load a scene and perform the

necessary calculations. Given that the entire system for these calculations

is already implemented in JavaScript, attempting to use some other tool to

make the calculations would have taken far too long to implement, which

left two viable options to consider: Increasing the testing browser’s memory

limits to allow the exitances to be calculated in the browser, knowing that

they will only need to be calculated once; or creating a minimal version

of the system that can run outside of the browser to perform the calcula-

tions. The latter option was chosen, as increasing the memory limits of the

browser, whilst quick and easy, would only be a short-term solution for this

device; however a minimal system running from the command line would

be beneficial in the long run, as not all systems support browser hardware

acceleration by default.

6.5 Summary

In this chapter we’ve covered the design choices made, and the reasoning

behind each of them. From the visuals of the user interface, the methods

used to design scenes, and the handling of exitance files to be used by the

system. The next chapter will go over the implementation of the design

choices.

28

Chapter 7

Implementation

This chapter covers the implementation choices that were made throughout

the project. As this project serves to create an artefact as a proof of concept,

rather than a distributable product, speed of implementation was the pri-

mary factor considered, with efficiency and maintainability of the resulting

code being secondary factors.

The implementation of the image saving feature, the poisson disc sampling

for object placement, as well as the changing of loops in the system to speed

up loading can be found in appendix D.

7.1 Development setup

During the implementation stage, linting was done with ESLint (ESLint,

2021) to improve the readability and maintainability of the resulting code.

ESLint was configured using the eslint-config-portsoc package (Kopecký

et al., 2020), and the Atom text editor (GitHub, 2020) was used, with the

linter-eslint-node package (Dupont et al., 2022) to enable real-time lint-

ing.

29

7.2 Light sources

In order to have the light sources act as origins for echolocation calls, two new

properties were created: isLight, and activeTime. These properties will

come into play when calculating Patch form factors, and when initialising

when each light emitting Patch should emit their light.

The Surface3 class acts as a parent for Patch instances, which contains

the lighting information regarding their child patches. As isLight and

activeTime are directly related to lighting, it was decided that the Surface3

class will be where these properties are held.

7.2.1 Invisible lights

The isLight property is a boolean which describes whether or not a given

surface is part of a light source. It is used both to tell the ThreeJS renderer

(Cabello, 2020) not to render the surface, and also to ensure that the surface

receives no light from the scene, as well as preventing it from occluding any

light in the scene and casting a shadow.

Another method of making light sources invisible would have been to just re-

place any check for the isLight property with a check to determine whether

a given surface had a non-zero emittance value, and if so then to make the

surface invisible. This method was disregarded as it would have stopped

requirement CH11 from being able to be implemented.

Preventing rendering

There are two functions inside the renderer.js module that deal directly

with the rendering of surfaces: showEnvironment(), and updateColors().

The showEnvironment() function creates new geometry for every Instance

instance2 in the environment, and the updateColors() will update the

colour properties of every surface in the environment when a colour set-

ting, such as gamma or exposure, is changed. Both of these functions were

1CH1 - Minor background noise implementation.
2”Instance instance” refers to a given instance of the Instance class, which contains

the surfaces and vertices that make up a scene object.

30

modified to ignore any surface which has isLight = true, and so light

sources will never be shown on screen.

Preventing shadows and reflections

The projection algorithm, which calculates form factors, was modified to

not project any patch with Patch.parentSurface.isLight = true. This

means that no light source will ever receive light from another patch in the

scene, and that surfaces that may be behind the light source will receive

lighting as if the light source isn’t there.

Radiosity reciprocity

Form factors in the radiosity algorithm are usually calculated from the per-

spective of the receiving patch (Ashdown, 1994, p. 48). This means that for

every patch, the light being received from every other patch is calculated.

One of the key principles of the radiosity algorithm is the reciprocity rela-

tion, which states that if the form factor Fij can be calculated from patch

Ei to patch Ej , then we can easily calculate the reciprocal form factor Fji

from patch Ej to patch Ei (Ashdown, 1994, p. 51).

AiFij = AjFji (7.1)

Where Ai and Aj are the areas of patches i and j respectively.

Because of this reciprocal relationship, the form factors can be calculated

in reverse, from the perspective of the emitting patch. The existing system

does in fact make this reversed calculation, and it’s for exactly this reason

that it is possible to make the light sources receive no light whilst still being

able to emit light into the scene.

In making this change, the fundamental reciprocity relation is being broken,

as the form factors are no longer calculatable in reverse. However no negative

outcomes were foreseen that would interfere with this project’s success, and

so development continued with this broken relation in mind.

31

// Emit between steps 0 to 9

activeTime = [0, 9]

// Emit between steps 0 to 4, and between steps 10 to 14

activeTime = [[0, 4], [10, 14]]

Algorithm 7.1: Example activeTime values.

7.2.2 Lights on timers

The activeTime property holds the information about which frames of the

simulation a light source should emit light. It is stored as an array either

containing two integer values, or a set of arrays which all contain two integer

values. These integer values represent the first step that the light is emitting,

followed by the last step that the light is emitting (Alg. 7.1).

The initExitance() method of the HemiCube class in the existing system

was set to make all light sources emit for the first 10 time steps of the

simulation3. This method was modified to emit based on the times given in

the activeTime property.

7.3 Flight path

To simulate a bat flying around a static scene, the light sources must be

positioned on a pre-defined path and the camera needs to be able to move

along the same path. Because of this, details relating to the flight path are

stored in the path.js module, which is imported by any other module that

requires access.

7.3.1 Parametric equations

Parametric equations were chosen for the basis of the flight path due to

their ability to generate a different value for each of the three axis based on

a single independent variable, which is time. Sin and Cos were used for the

3Original system: /radiosity/slowrad.js L168-L177

32

https://github.com/portsoc/Slow-light-Radiosity/blob/ea2f61f4b67427691f00d3966aaba0c9821602c2/radiosity/slowrad.js#L168-L177

parametric equations because of their ability to create a perfect loop.

Trigonometry in JavaScript deals with angles in radians rather than degrees

which meant that the values passed into the equations needed to be scaled

to between 0 and 2π. All animations are assumed to be 1,000 steps long,

which meant that the conversion from time step to radians was a simple

calculation. After scaling the values between 0 and 2π, a speed multiplier

is also added, which for this project is a multiplier of two.

The specific equations chosen for the simulation are:

x = 31× Cos(t)

y = 31× Sin(t)

z = 2× Cos(t) + Sin(3t) + 16

(7.2)

7.3.2 Placing objects along the path

Placing objects along the flight path is a simple process. When creating a

scene, an object that should be positioned on the path should be created

and translated based on the returned value from flightPath(t) where t is

the time step in which the camera should intersect the object.

7.3.3 Moving the camera along the path

Within the renderer.js module, a new ThreeJS perspective camera was

made to act as the flight camera. The animate() function was modified to

pass the current time step, every step, into the path.js module, and then

take the returned values and pass them into the flight camera’s position

value.

After testing whether this worked (Sect. 8.3.1), it was found that the cam-

era’s path wasn’t lining up with the light sources that had been placed.

Based on information gathered after testing, it was determined that ThreeJS

uses a different co-ordinate system to the rest of the system, and as such the

co-ordinates had to be rotated by +90◦ around the x-axis before they were

provided to the camera (Fig. 7.1). This equates to the new y value being

the original z value, and the new z value being the negative of the original

y value (Alg. 7.2).

33

Figure 7.1: Co-ordinate system before and after +90◦ rotation around x-axis.

const [x, y, z] = flightPath(currentStep);

flightCam.position.x = x;

flightCam.position.y = z;

flightCam.position.z = -y;

Algorithm 7.2: Fixed camera position assignment.

7.4 JSON trees

To enable trees to be loaded into a scene, a new module js-output.js was

created which converts the tree structure generated by generate-tree.js

to JSON format. It is a direct replacement for scad-output.js however it

outputs the trees in JSON format as opposed to SCAD format.

7.4.1 Fixing branches

The branches weren’t loading correctly when opening the trees from JSON

format (Appx. E.5.3). This was caused by some incorrect matrix rotations,

and they were repaired by removing the need for rotations at all. Rather

than storing the branches’ start positions and rotations, their start and end

positions are stored and they’re constructed between the specified points,

thus fixing the issue (Fig. 7.2). Without calculating the rotations, the

branches get thinner as they get more horizontal, this is because the branches

are made of two connected triangles that have no height and so the surfaces

that connect them form a narrower tube as the triangles’ z values approach

each other (Fig. 7.3).

34

(a) Before (b) After

Figure 7.2: Default tree branch structure before and after fixing branch construc-

tion.

Figure 7.3: Branch structure narrowing as start and end approach same z value.

35

Cutoff 0.1 0.2 0.3 0.4 0.5

Surfaces 4,695 2,295 1,914 1,455 1,155

Cutoff 0.6 0.7 0.8 0.9 1.0

Surfaces 885 573 432 324 261

Table 7.1: Number of surfaces needed for the branches at different width cutoff

values.

(a) Without leaves. (b) With leaves.

Figure 7.4: Tree model after reducing the number of branches.

7.4.2 Loading improvements

The tree models can take a large amount of time to load in, and this is due

to their complexity. The generated trees have many branches and leaves,

and so to improve their loading time, the number of branches loaded in

was reduced based on the width of the branch. Different cutoff values were

experimented with before deciding which one to use (Tab. 7.1), and in the

end a cutoff value of 0.7 was used as it significantly reduced the number

of branches whilst having a minimal impact on the tree’s appearance (Fig.

7.4)

36

7.5 Exitance files

When loading complex scenes, the system would take a long time calculat-

ing form factors and exitances before the simulation could play. To avoid

this, the ability to export exitance files was added so that these files could

be loaded into the system to reduce the loading time for each scene. In

some situations, the browser would crash due to a lack of memory whilst

performing the exitance calculations, and so the decision was made to create

a command line system to generate exitance files, as a command line process

can be allocated more memory than a browser-based one.

7.5.1 Command line system

A new module calculate.js was created which imports all the environ-

ments from the environments-list.js module. Using these environments,

the system can load all the data that defines an environment and run the

exitance calculations on them, before exporting them as JSON files for the

browser to load.

7.5.2 File compression

Due to the size limit of 100MB for files hosted on GitHub pages, the exitance

files needed to be compressed, as one of them reached ≈ 374MB in size (Tab.

E.2). The possibility of using another hosting platform for the exitance

files was considered, however that would have made the system slightly

harder to maintain, and another free hosting platform may not have been

available.

To reduce the file sizes being saved, it was decided that only one colour

channel’s value needed to be stored and that value can be loaded back into

all three channels when running. The implication of this means that the

system can only ever be in grayscale, which isn’t ideal, however it doesn’t

stop the system from meeting any of the requirements set out in chapter

54.

4WH2 - Different colours to illustrate the doppler effect will be impossible to meet,

however it was planned as a requirement not to be met, so this is acceptable.

37

For the actual compression, Run-Length Encoding (RLE) was the first

method used for compression as it is lossless and so the simulation could

remain at peak accuracy, however RLE barely reduced the file size due to

many values being close to one another but not equal.

Two other methods of compression were used in tandem with RLE. The first

of these was converting all numbers to their exponential form, and removing

all numbers after the decimal point in the mantissa (1.04e-5→1e-5) which

lowered the number of characters being used to store the number. The

second technique used was rounding all numbers between 1e-9 and 0 to

whichever of those two values they fall closest to. This means that all

numbers are stored using a maximum of four characters.

The implications of these lossy compression methods were monitored, how-

ever looking at the resulting differences between the uncompressed data and

the fully compressed data (Appx. I.3), there is minimal difference and so

the use of lossy compression feels justified, however in some circumstances

the differences may be more noticeable and so it should be monitored in the

future.

7.6 Summary

In this chapter, we have looked at how light sources in the scene were made

invisible and given timers to determine when they activate. Then the imple-

mentation of a flight path for the camera, and the difference in co-ordinate

systems that had to be resolved to get the motion working. Finally we cov-

ered the inclusion of JSON trees and the improvements made to speed up

their loading times.

38

Chapter 8

Testing

All projects are prone to issues and bugs, both expected and unexpected.

Stopping them from making it to release is an important stage of the devel-

opment process which helps ensure a quality output. As outlined in chapter

4, this project was subject to testing throughout the entire course of de-

velopment, and this allowed the project to grow at a constant rate without

enabling issues to get out of hand.

Because of the frequent testing that was being done throughout the devel-

opment process, the artefact was tested in-house, as this meant that the

implementation wasn’t slowed down whilst waiting for third-parties to test

the system.

8.1 System setup

All in-house tests were done from the following system setup.

8.1.1 Testing machine

CPU Intel i7-9700K @ 3.60GHz

RAM 2x8GB DDR4 @ 2133MHz

GPU NVIDIA GeForce GTX 1050 Ti 4GB @ 1.29GHz

OS Windows 10 Home 21H2 (19044.1586)

39

8.1.2 Testing browser

Version Google Chrome 100.0.4896.127 (64-bit)

jsHeapSizeLimit 4,294,705,152 bytes (4.295GB)

8.2 Tests done

Some unit tests were done on every feature of the artefact after they had

been implemented. Table 8.1 shows the results of these unit tests. More

detailed breakdowns of each test can be found in appendix E, whilst the

analysis of the tests that didn’t pass will be discussed next.

Test Pass / Fail Appendix

Invisible light sources Pass E.1

Lights activating on timers Pass E.2

Placing objects along path Pass E.3.1

Moving camera along a path #1 Fail E.3.2

Moving camera along a path #2 Pass E.3.2

Loading STL tree Fail E.4

Loading JSON tree Pass E.5

Faster loading of JSON tree Pass E.6

Browser exitance exporting and importing Inconclusive E.7

Command line exitance generation Pass E.8

Exitance file compression Pass E.9

Deployment for testing Pass E.10

Table 8.1: Unit testing table.

8.3 Issues that arose during testing

8.3.1 Moving camera along a path #1

When attempting to make the camera move along the path (Appx. E.3.2),

the scene loaded up and the animation was played, however the camera’s

motion was not lining up with the objects that had been placed along its

path. Because the positioning of these objects had been verified in the

40

previous test (Appx. E.3.1), it was clearly an error in how the co-ordinates

were being provided to the camera.

After giving the camera some preset hard coded co-ordinates, it became

clear that ThreeJS was using a different co-ordinate system to the rest of

the system; one where the horizontal plane was the x, z plane as opposed to

the x, y plane. Based on this information, and the assumption that ThreeJS

most likely uses a right-handed co-ordinate system, it was determined that

the y-axis was likely pointing vertically upwards. Knowing this, the co-

ordinates provided to the camera were changed accordingly (Sect. 7.3.3),

and in the second test everything worked as expected (Appx. E.3.2).

8.3.2 Loading STL tree

The ability to load STL trees into the scene was tested in appendix E.4 and

in doing the test, the browser crashed due to a lack of memory. Investigating

why this happened led to the realisation that STL files are used commonly

by 3D printers and other technology that requires shapes to be possible in

the real world. This means that in STL, a shape must have a minimum

of four faces, and cannot be hollow1 as this is the minimum required for a

shape to be created in the real world.

Given that computer graphics have no such requirement for shapes to be

solid, it was clear that STL models were not the way forward, and that

to allow trees to be loaded, a new format had to be used. After some

consideration, JSON was chosen as the replacement format (Sect. 6.2.1)

and STL models were no longer considered in development.

8.3.3 Browser exitance exporting and importing

When attempting to export the exitance files from the browser (Appx. E.7),

the testing was unable to be completed due to the complex scene crashing

before the exitance data had been calculated. This crash made it clear that

the browser did not have the memory capacity required to reliably load a

scene and calculate exitance data. As stated in section 8.1.2, the testing

1”hollow shape” refers to something like a triangular prism that’s had its ends removed.

41

setup has ≈ 4.3GB of memory that JavaScript can use. Understanding that

this is likely more than some everyday systems have, a way of taking the

calculations away from the browser had to be devised in order to allow more

users to be able to access the system. It was decided that these calculations

could be made from a new command line interface, and the resulting files

could be imported into the system (Sect. 6.4).

42

Chapter 9

Evaluation

This chapter will cover the evaluation against the requirements set out in

chapter 5, as well as the feedback gathered from prospective users of the

system. Additionally, the project’s success against its aim laid out at the

start of the report (Sect. 1.1), and the overall success and suitability of the

methods used throughout this project will also be discussed later on.

9.1 Evaluation against requirements

The evaluation against requirements was conducted using Alpha-Beta Test-

ing, where the Alpha testing consists of the tests carried out in chapter 8,

as well as the general observation of the system in action; and the Beta

testing was carried out by users, which will be covered later in section 9.2.

Alpha-Beta testing was chosen as this project is a proof of concept for a new

system, and so the Alpha testing allowed the features to be tested internally

as they were developed, whilst the Beta testing provided the opportunity

for users to provide feedback regarding the performance of the system, and

potentially spot issues that were missed in the Alpha tests.

Table 9.1 lays out all the requirements specified in chapter 5 and whether or

not they were met, excluding the Won’t have requirements as these were

designed not to be met. The explanation of those that weren’t met is next,

whilst a breakdown of all requirements can be found in appendix F.

43

ID Requirement Met or not met

MH1 A moving camera on a pre-planned path. Met

MH2 Application served on GitHub Pages. Met

MH3 Pre-loaded exitance data. Met

MH4 Light sources that activate sequentially. Met

MH5 New method of storing and loading trees. Met

SH1 Command line calculation ability. Met

SH2 Light sources that aren’t visible. Met

SH3 Compressed exitance data files. Met

CH1 Minor background noise. Not met

CH2 Exportable images. Met

CH3 Exportable animation. Not met

Table 9.1: All project requirements and whether or not they were met.

9.1.1 Requirements that weren’t met

CH1 - Minor background noise implementation

Whilst the background noise would not have been hard to implement, and

indeed, anyone with access to the final project’s source code could create

a scene with background noise implemented by just creating more surfaces

that emit light. The decision not to implement background noise was made

because it would have generated more surfaces, and with the system already

using enough memory that it crashes on some computer setups, it felt like

a very unimportant thing to spend time implementing without pushing the

system to crashing on even more setups.

CH3 - Exportable animation

The idea of an exportable animation is something that could still prove to

be a useful feature of the system, however the research needed to implement

it would have exceeded the time constraints of the project, and so it was

left out in order to make time for more important features. The decision

to scrap this particular requirement, was made because screen-recording

software already exists, and this makes the feature less useful when weighed

44

up against other features, especially when accounting for the time it would

take to implement.

9.2 User feedback

Whilst the in-house testing in chapter 8 revealed which features of the system

worked as expected and which ones were faulty thus enabling faults to be

promptly rectified. Gathering feedback from users gives insight into whether

the system works as other people might expect. This is especially important

for this project as no previous input has been received from potential users,

and so this is the only time that the output of the project is able to be

evaluated against what a user might consider to be successful.

To gather feedback, potential users were emailed both a link to the deployed

system, and to a feedback questionnaire (Appx. G). The questionnaire goes

through various questions relating to the technical performance, potential

applications, and the general use of the system.

Unfortunately, due to illness, the collection of user feedback was unexpect-

edly delayed. Given that this project’s primary aim was to create a system

that could be used to fill a gap in educational materials regarding echoloca-

tion, the planned target audience for this system is teaching staff, specifically

those with experience in biological sciences. Because of the unexpected de-

lay, most schools were out of term time and so it was difficult to reach an

audience of teaching staff.

Because feedback could not be gathered from specifically the target audience,

the decision was made to open up the feedback to any users so that the

performance and ease of use of the system could still be evaluated.

9.2.1 Results analysis

The results gathered from the feedback questionnaire highlighted some issues

regarding the performance of the system and helped to provide insight into

what the users would want to be incorporated into the system. All the

responses can be found in appendix H.

45

Figure 9.1: User feedback with crash information.

Source: Appendix H

Technical performance

Over 50% of the users reported that the system crashed whilst it was in use,

with exactly 50% specifying that it crashed before they could properly test

the system. Based on these crash statistics, information provided by the

users (Fig. 9.1), and the discovery of the browser crashing during testing

(Sect. 8.3.3), it is clear that the system requires too much memory in its

current state to be deployed effectively for people to use as even reducing

the browser’s load by running the calculations externally doesn’t seem to

save enough memory for most user setups to handle.

Applications of the system

Everybody that was able to test the system reported that they felt the

system had artistic value, and two thirds of these users said that they feel

it may be useful for demonstrating echolocation in an educational capacity.

However because of the large amount of crashes experienced, combined with

the fact that the feedback could not be elicited specifically from the project’s

target audience; whilst this feedback is promising, and shows that the system

may have some general appeal to it, I would consider these results to be

inconclusive as the sample size isn’t large enough, and is lacking in users

46

from the target backgrounds.

Future additions

In the feedback questionnaire, the users were asked if there are any features

that could be added to make the simulation more aesthetically appealing,

or that could make the simulation more useful for teaching purposes.

Regarding the aesthetics, it was identified that the environments present

didn’t have enough variety within them and that they could feature different

objects. This is definitely something that would be considered in future de-

velopments, however the ability to have more interesting and diverse scenes

is currently rather limited by the memory required for the system to run. It

was also noted that tool tips present when hovering over buttons should be

capitalised.

For teaching purposes, a suggestion was to have the camera be user-controlled

and to add a means of ’activating’ echolocation pulses and using them to

navigate an environment. This would definitely be a good addition to add,

however the radiosity algorithm would not be the way to go about doing

this as it would require the form factors and exitances to be calculated ev-

ery time a pulse is used, which would massively increase the performance

costs. Another suggestion was to add some kind of ”birds eye view with

arrows / lines to show the sound bouncing”, however it’s unclear exactly

what is meant by this.

9.3 Success against the project’s aim

In chapter 1, the aim of this project was discussed which explained how the

desired output of this project is to have a web application with accompa-

nying YouTube videos to act as an educational tool to teach people about

echolocation.

47

This project has successfully created a web application and deployed it via

GitHub Pages, and YouTube videos have been created and uploaded for

people to view1. However whilst these two outputs have been successfully

created and made available to the public, the overall success of this project

as an educational tool is still undetermined, this is because, as stated in

section 9.2, the project was unable to be tested by people with experience

in the desired fields.

Just because the project hasn’t proven to be successful as an educational

tool, does not mean that it has failed. The Alpha-Beta testing that was

carried out highlighted some major performance issues that need addressing

before the software artefact can be considered complete, and once these

issues have been fixed further testing will need to be done to ensure it meets

the required specifications for an educational tool. However the project still

shows promise that it may prove to be useful, and as a proof of concept, I

believe it has demonstrated enough success to benefit future work that may

be done in and around this field of interest.

9.4 Critique

9.4.1 Approach

Overall, I believe the methodological approach outlined in chapter 4 was

the right way to go about the implementation of this project, as having

the ability to discover new requirements throughout the development meant

that there were opportunities for me to backtrack and correct myself, which

allowed me to create a higher quality artefact. However if this project was to

be continued for the purposes of creating a completed deployable product,

a different methodology should be used, as forethought and planning will

be paramount to ensuring the maintainability of the system in the long

run.

1https://www.youtube.com/playlist?list=PLVg2-G6HwbO6lhhChUvL4ntMTlgaTRLAv

48

https://www.youtube.com/playlist?list=PLVg2-G6HwbO6lhhChUvL4ntMTlgaTRLAv

9.4.2 Research

The initial research I did into the topics surrounding the project was suf-

ficient enough to gain enough understanding of the field. However I ne-

glected to do any primary research into what features potential users might

expect/want to be implemented in a system like this. This lack of primary

research for requirements elicitation made it harder to judge the success of

this project as an educational tool.

Additionally, a mistake was made by assuming that literary research had

to be done in full before beginning development. However after seeing how

the system worked and being able to practically apply knowledge during

its development, my understanding of the topics being used was increased

dramatically. In future exploratory projects, this fact should be exploited

such that development should have a designated break within which more

research can be done regarding the mechanics surrounding the project so

they can be better integrated in the final result.

9.4.3 Model suitability

Light vs sound

The largest problem with the radiosity model for this system was the fact

that radiosity is designed to simulate a basic lighting system, and whilst

light and sound are both waves, and they share many properties, they do

have their differences.

For example, if a room is made out of brick on all sides, with no doors or

windows, if there was a light source inside the room such as a torch, then you

might expect all the light to be blocked by the brick walls, regardless of the

strength of the light. However if there was a loud sound system in the room,

then one could expect the sound waves to travel through the walls.

Conversely, if the walls were made out of thick glass, then light would almost

definitely be seen from the outside, whilst the sound waves may be more

obscured.

49

These differences in what materials light and sound can pass through are

largely due to their wavelengths. Visible light ranges in wavelength from

400nm to 700nm, and with the speed of light being 299,792,458ms−1, this

gives light waves a frequency ranging from ≈ 749THz to ≈ 428THz (Eq.

3.3). This puts the lowest frequency light wave (violet light) at about

21,313,747,000 times greater than the 20kHz upper bound on audible sound.

As discussed in section 3.1.1, the decay of a wave as it travels through a

medium is likely greater for waves of higher frequency. The immense dif-

ference in frequencies between visible light and the upper bound of a bat’s

echolocation call at approximately 212kHz means that the radiosity algo-

rithm, and any other algorithms design to simulate light may be inherently

unable to model sound without serious modification.

Resolution

The radiosity algorithm will calculate reflections of light on all surfaces, with

near perfect clarity. This is fine when simulating light, however given the

wavelength differences between sound and light outlined above, it’s highly

unlikely that bats have perfect clarity regarding the environment around

them because, as discussed in section 3.2.1, most insectivorous bats use

a frequency up to 60kHz, which equates to a wavelength of ≈ 5.667mm,

this means they can’t detect things less than 5.667mm in size. With this

minimum detection size, would a bat be able to detect a leaf from a side on

angle? Having a method of excluding objects from being detected based on

different properties of the light in the scene would allow this frequency to

resolution correlation to be implemented correctly, however I’m not sure if

a feature of this sort would be possible using the radiosity algorithm.

50

Chapter 10

Conclusions

This project as a whole has been mostly successful. At the beginning of

the implementation chapter it was mentioned that this project served to

create a proof of concept to show that there was some life to this idea (Sect.

7).

Almost all requirements set out in chapter 5 have been met, with only two

Could have requirements remaining unfulfilled1. However despite these

requirements not being met, the system still operates at an acceptable level

to be able to say that it is working as intended. The testing carried out

in chapter 8 revealed no bugs or features not working as expected, however

it was discovered that the system requires a significant amount of memory

to operate and this did impact the users that tested the system, with the

majority of them suffering crashes during their usage (Sect. 9.2.1), and it’s

for primarily this reason that the system is not deemed to be worthy of

distribution.

1CH1 - Minor background noise, and CH3 - Exportable animation

51

10.1 Future considerations

10.1.1 Different shape light sources

Currently the light sources used along the bat’s flight path are cubes that

have undergone no orientation changes, which means that light is emitted

in all directions equally. Changing these shapes to tetrahedrons would lower

the vertices required per light from eight to four, which could have a positive

impact on the time taken to calculate all the exitance values in a scene.

Taking this a step further, as bats direct their echolocation calls forwards

(Jakobsen et al., 2013), a tetrahedron with different emittance values on each

face may provide more accurate visualisations as it could have the face with

a stronger emittance directed forwards, or perhaps even a single surface an-

gled forwards might suffice. The ability to orient these direction-dependent

implementations already has some ground work laid out in path.js where

the derivatives of the parametric equations used for movement are already

stored2. These derivatives provide the direction of motion of the bat at any

given time in the simulation.

10.1.2 Improved tree loading

Currently every section of a trees trunk and branches are independent of the

others, only bound together in the fact that they make a single Instance3.

Could a tree be made using less vertices if each branch was created as a

single shape rather than multiple smaller sections (Fig. 10.1)? This would

lower the amount of vertices in the scene, and so would likely make the

exitance calculations faster, and potentially even save memory to allow the

system to be used in more browsers without risk of crashing.

2Source Code: /modeling/path.js L20-L22
3Source Code: /modeling/json-tree-loader.js L47

52

https://github.com/UP940148/up940148-fyp/blob/5aa97375d7d882fe71e1d4daada27c1560b877d8/modeling/path.js#L20-L22
https://github.com/UP940148/up940148-fyp/blob/5aa97375d7d882fe71e1d4daada27c1560b877d8/modeling/json-tree-loader.js#L47

Figure 10.1: Conversion of two trunk sections into one whole surface. Different

coloured vertices equate to different surfaces that they form.

10.1.3 Remove the system from the browser

Applications running in browsers can have strict memory limits imposed on

them. Given that the system now has command line exitance calculation,

could steps be taken to make the system entirely independent of the browser?

And would removing it from the browser improve the performance of the

system?

10.1.4 Adjusting the radiosity model

As mentioned in section 9.4.3, the radiosity model isn’t necessarily an ac-

curate model for simulating sound, as sound waves and light waves behave

differently. Would it be possible to allow some objects to be slightly translu-

cent? This could be done using a property similar to spectral reflectance,

and it could be used to allow objects like windows and tinted plastic sheets

to be created in a scene. Not only would this allow for more intricate light

effects, but it could also be used to allow light to pass through objects in

the same way that sound could.

53

If one could figure out how much of a wave should come out the other side

of an object, then it would simply be a matter of setting the face that the

wave emerges from with some emittance value at that moment. Because

light and sound both diffract, the way that that surface emits light wouldn’t

need to be changed to accommodate anything beyond what it would do with

a normal Lambertian reflection.

10.1.5 Adding sound

Considering the entire idea of the system is to simulate echolocation, which

is an audible method of navigation, incorporating sound into the system

would likely help users become more immersed, and might help make the

system feel more genuine. If the sound of the echoes were also simulated,

with 3D positional audio, then maybe this system could be used to actually

help people actually learn how to echolocate.

10.2 Personal reflection

When beginning this project, the anticipated workload was fairly over-

whelming as I had never attempted a project of this scale before, I’d never

heard of the radiosity algorithm before, and I’d never used ThreeJS in any

capacity. However, being able to examine how the Slow-light Radiosity sys-

tem worked and being able to make small changes to see how all the different

pieces interacted with one another, and being able to ask Jacek questions

when I got confused, allowed me to figure out what I needed to do to make

my system operational.

Throughout the project, a number of issues arose, many of which were solved

by looking up help forums and documentation, however I think my previous

experience in programming, especially JavaScript, was the biggest aid to the

problem solving required. Taking the 3D Computer Graphics and Animation

module in my second year definitely helped me to understand the basics

required to embark on this project, as local and global illumination were

both covered as part of its content.

54

If I were to do this project again, I would spend less time attempting to do all

the research required prior to development, as with a project of this nature,

development and research should be in conjunction with one another so that

the practical application of knowledge can help deepen the understanding of

the research being done. I think it would also be beneficial to write a brief

diary of the things done so that all the notes taken can be easily accessed,

and they can be used to develop a more detailed plan, as the plan set out

in chapter 4, whilst it was functional and did help me to manage my time,

it could have been more in-depth and potentially covered the techniques I

was wanting to use.

Overall, I’m happy with the way that this project has turned out, however

I’m aware that there are parts of the project that could be improved upon.

I feel I would be much more confident carrying out a project of this scale in

the future as I can use the strengths and weaknesses found in this project

to fuel my future decisions.

55

References

3d common properties. (n.d.). Retrieved April 17, 2022, from https : / /

www.neurobs.com/pres docs/html/03 presentation/04 stimuli/03

visual stimuli / 02 picture stimuli / 04 3d graphics / 02 3d common

properties/index.html

Adobe. (2022). Photoshop (Version 23.2.2) [Computer software]. https://

www.adobe.com/uk/products/photoshop.html

Allwood, G. (2021, August 20). Know your Navy - all the ships and subs

in the Royal Navy. Forces Network. Retrieved April 23, 2022, from

https://www.forces.net/services/navy/know-your-navy-all-ships-

and-subs-rn

Ashdown, I. (1994). Radiosity: A Programmer’s Perspective. John Wiley &

Sons.

BBeck1. (2016, September 26). Ambient and diffuse light are not even re-

motely the same thing. Retrieved April 17, 2022, from https : / /

community. khronos . org / t / difference - between - ambient - diffuse -

material/75109/4

Bellis, M. (2020, March 27). The History of Sonar. ThoughtCo. https://

www.thoughtco.com/the-history-of-sonar-1992436

Berg, R. E. (2017, October 6). Ultrasonics. Encyclopedia Britannica. Re-

trieved April 23, 2022, from https://www.britannica.com/science/

ultrasonics

Cabello, R. (2020, March 25). Threejs (Version r115). https://github.com/

mrdoob/three.js/tree/r115

56

https://www.neurobs.com/pres_docs/html/03_presentation/04_stimuli/03_visual_stimuli/02_picture_stimuli/04_3d_graphics/02_3d_common_properties/index.html
https://www.neurobs.com/pres_docs/html/03_presentation/04_stimuli/03_visual_stimuli/02_picture_stimuli/04_3d_graphics/02_3d_common_properties/index.html
https://www.neurobs.com/pres_docs/html/03_presentation/04_stimuli/03_visual_stimuli/02_picture_stimuli/04_3d_graphics/02_3d_common_properties/index.html
https://www.neurobs.com/pres_docs/html/03_presentation/04_stimuli/03_visual_stimuli/02_picture_stimuli/04_3d_graphics/02_3d_common_properties/index.html
https://www.adobe.com/uk/products/photoshop.html
https://www.adobe.com/uk/products/photoshop.html
https://www.forces.net/services/navy/know-your-navy-all-ships-and-subs-rn
https://www.forces.net/services/navy/know-your-navy-all-ships-and-subs-rn
https://community.khronos.org/t/difference-between-ambient-diffuse-material/75109/4
https://community.khronos.org/t/difference-between-ambient-diffuse-material/75109/4
https://community.khronos.org/t/difference-between-ambient-diffuse-material/75109/4
https://www.thoughtco.com/the-history-of-sonar-1992436
https://www.thoughtco.com/the-history-of-sonar-1992436
https://www.britannica.com/science/ultrasonics
https://www.britannica.com/science/ultrasonics
https://github.com/mrdoob/three.js/tree/r115
https://github.com/mrdoob/three.js/tree/r115

Caulfield, B. (2022, March 23). What is path tracing? Retrieved April 17,

2022, from https://blogs.nvidia.com/blog/2022/03/23/what- is-

path-tracing/

Chege, J. (2020, November 10). Javascript iterations - which one is faster?

Retrieved March 13, 2022, from https://www.section.io/engineering-

education/javascript-iterations-which-one-is-faster/

Dupont, A., Brix, T., & Zamir, B. (2022, March 20). https://github.com/

AtomLinter/linter-eslint-node/tree/v1.0.4

Elias, H. (2000). Radiosity. Retrieved April 22, 2022, from http://freespace.

virgin.net/hugo.elias/radiosity/radiosity.htm Archived at https://

web.archive.org/web/20010607021839/http://freespace.virgin.net:

80/hugo.elias/radiosity/radiosity.htm

ESLint. (2021, March 26). https://github.com/eslint/eslint/tree/v7.23.0

Fahy, F. J., & Walker, J. G. (Eds.). (1998). Fundamentals of Noise and

Vibration. Spon Press.

Font Awesome. (2020, March 23) (5.13.0). Retrieved April 4, 2022, from

https://github.com/FortAwesome/Font-Awesome/releases/tag/5.

13.0

GeoGebra GmbH. (2020). GeoGebra 3D Calculator (Version 5.0.580.0). Re-

trieved March 4, 2022, from https://www.geogebra.org/3d

Geoscience Australia. (n.d.). Sidescan sonar. GOV.AU. https://www.ga.

gov.au/scientific-topics/marine/survey-techniques/sonar/sidescan-

sonar

GitHub. (2020, May 18). https://github.com/atom/atom/tree/v1.47.0

Goral, C. M., Torrance, K. E., Greenberg, D. P., & Battaile, B. (1984).

Modeling the Interaction of Light Between Diffuse Surfaces, 213–

222. https://doi.org/10.1145/800031.808601

Griffin, D. R. (1944). Echolocation by blind men, bats and radar. Science,

100 (2609). https://doi.org/10.1126/science.100.2609.589

Honsberg, C. B., & Bowden, S. G. (2019). Absorption Coefficient. Photo-

voltaics Education. https ://www.pveducation .org/pvcdrom/pn-

junctions/absorption-coefficient

57

https://blogs.nvidia.com/blog/2022/03/23/what-is-path-tracing/
https://blogs.nvidia.com/blog/2022/03/23/what-is-path-tracing/
https://www.section.io/engineering-education/javascript-iterations-which-one-is-faster/
https://www.section.io/engineering-education/javascript-iterations-which-one-is-faster/
https://github.com/AtomLinter/linter-eslint-node/tree/v1.0.4
https://github.com/AtomLinter/linter-eslint-node/tree/v1.0.4
http://freespace.virgin.net/hugo.elias/radiosity/radiosity.htm
http://freespace.virgin.net/hugo.elias/radiosity/radiosity.htm
https://web.archive.org/web/20010607021839/http://freespace.virgin.net:80/hugo.elias/radiosity/radiosity.htm
https://web.archive.org/web/20010607021839/http://freespace.virgin.net:80/hugo.elias/radiosity/radiosity.htm
https://web.archive.org/web/20010607021839/http://freespace.virgin.net:80/hugo.elias/radiosity/radiosity.htm
https://github.com/eslint/eslint/tree/v7.23.0
https://github.com/FortAwesome/Font-Awesome/releases/tag/5.13.0
https://github.com/FortAwesome/Font-Awesome/releases/tag/5.13.0
https://www.geogebra.org/3d
https://www.ga.gov.au/scientific-topics/marine/survey-techniques/sonar/sidescan-sonar
https://www.ga.gov.au/scientific-topics/marine/survey-techniques/sonar/sidescan-sonar
https://www.ga.gov.au/scientific-topics/marine/survey-techniques/sonar/sidescan-sonar
https://github.com/atom/atom/tree/v1.47.0
https://doi.org/10.1145/800031.808601
https://doi.org/10.1126/science.100.2609.589
https://www.pveducation.org/pvcdrom/pn-junctions/absorption-coefficient
https://www.pveducation.org/pvcdrom/pn-junctions/absorption-coefficient

itskawal2000, & surbhikumaridav. (2020, August 22). Introduction to Ex-

ploratory Style of Software Development. https://www.geeksforgeeks.

org/introduction-to-exploratory-style-of-software-development/

Jakobsen, L., Brinkløv, S., & Surlykke, A. (2013). Intensity and direction-

ality of bat echolocation signals. Frontiers in Physiology, 4. https:

//doi.org/10.3389/fphys.2013.00089

JGuerra. (2019, September 23). The History of Ultrasounds: From Bats to

Babies. Conquest Imaging. https://conquestimaging.com/ultrasound-

blog/history-ultrasounds-bats-babies/

Jones, G. (2005). Echolocation. Current Biology, 15 (13). https://doi.org/

10.1016/j.cub.2005.06.051

Jones, G., & Holderied, M. W. (2007). Bat echolocation calls: Adapta-

tion and convergent evolution. Proceedings of the Royal Society B,

274 (1612). https://doi.org/10.1098/rspb.2006.0200

jun.yoshino. (2021, September 28). Georadiosity. Retrieved April 16, 2022,

from https://enlighten.atlassian.net/wiki/spaces/SDK400/pages/

2352592123/GeoRadiosity

Kintel, M. (2021, February 7). OpenSCAD (Version 2021.01). https : / /

openscad.org/

Kopecký, J., Boakes, R., & TLDRQwerty. (2020, December 10). https://

github.com/portsoc/eslint-config-portsoc/tree/09f213

Kopecký, J., & Mattone, T. (2020). Slow-light Radiosity (Version ea2f61f)

[GitHub Repository]. University of Portsmouth: School of Comput-

ing. Retrieved February 21, 2022, from https://github.com/portsoc/

Slow-light-Radiosity/tree/ea2f61f

Kumar, S., & Lee, H. P. (2019). The Present and Future Role of Acous-

tic Metamaterials for Architectural and Urban Noise Mitigations.

Acoustics, 1 (3), 590–607. https://doi.org/10.3390/acoustics1030035

Kurtus, R. (n.d.). How Obstacles Affect Sound Waves. School for Cham-

pions. https : / /www . school - for - champions . com/ science / sound

obstacles.htm

Lague, S. (2018, November 23). [Unity] Procedural Object Placement (E01:

poisson disc sampling) [Video]. YouTube. https ://www.youtube .

com/watch?v=7WcmyxyFO7o

58

https://www.geeksforgeeks.org/introduction-to-exploratory-style-of-software-development/
https://www.geeksforgeeks.org/introduction-to-exploratory-style-of-software-development/
https://doi.org/10.3389/fphys.2013.00089
https://doi.org/10.3389/fphys.2013.00089
https://conquestimaging.com/ultrasound-blog/history-ultrasounds-bats-babies/
https://conquestimaging.com/ultrasound-blog/history-ultrasounds-bats-babies/
https://doi.org/10.1016/j.cub.2005.06.051
https://doi.org/10.1016/j.cub.2005.06.051
https://doi.org/10.1098/rspb.2006.0200
https://enlighten.atlassian.net/wiki/spaces/SDK400/pages/2352592123/GeoRadiosity
https://enlighten.atlassian.net/wiki/spaces/SDK400/pages/2352592123/GeoRadiosity
https://openscad.org/
https://openscad.org/
https://github.com/portsoc/eslint-config-portsoc/tree/09f213
https://github.com/portsoc/eslint-config-portsoc/tree/09f213
https://github.com/portsoc/Slow-light-Radiosity/tree/ea2f61f
https://github.com/portsoc/Slow-light-Radiosity/tree/ea2f61f
https://doi.org/10.3390/acoustics1030035
https://www.school-for-champions.com/science/sound_obstacles.htm
https://www.school-for-champions.com/science/sound_obstacles.htm
https://www.youtube.com/watch?v=7WcmyxyFO7o
https://www.youtube.com/watch?v=7WcmyxyFO7o

Langley, L. (2021, February 3). Echolocation is nature’s built-in sonar. Here’s

how it works.National Geographic. https://www.nationalgeographic.

com/animals/article/echolocation-is-nature-built-in-sonar-here-is-

how-it-works

Mazda, F. (Ed.). (1993). Telecommunications Engineer’s Reference Book.

Butterworth Heinemann.

Mirrors. (n.d.). Retrieved April 16, 2022, from https://courses.lumenlearning.

com/boundless-physics/chapter/mirrors/

Mischi, M., Rognin, N. G., & Averkiou, M. A. (2014). Ultrasound imaging

modalities (Vol. 2). Elsevier.

Modeling Global Illumination with Radiosity. (2018, March 18). Retrieved

April 16, 2022, from https://help.autodesk.com/view/3DSMAX/

2022/ENU/?guid=GUID-C5A3C77B-794B-4444-9783-7F2EA11C16BD#

GUID-C5A3C77B-794B-4444-9783-7F2EA11C16BD GUID-C5A3C77B-

794B-4444-9783-7F2EA11C16BD

NVIDIA. (n.d.). Nvidia rtx ray tracing. Retrieved April 17, 2022, from https:

//developer.nvidia.com/rtx/ray-tracing

OpenSCAD. (n.d.). Retrieved April 3, 2022, from https://openscad.org/

Principles behind the Agile Manifesto. (2001). https://agilemanifesto.org/

principles.html

Purves, D., Augustine, G. J., Fitzpatrick, D., Hall, W. C., LaMantia, A.-S.,

Mooney, R. D., Platt, M. L., & White, L. E. (Eds.). (2018). Neuro-

science. Oxford University Press.

Reflection, Refraction, and Diffraction. (n.d.). The Physics Classroom. https:

//www.physicsclassroom.com/class/sound/Lesson-3/Reflection, -

Refraction,-and-Diffraction

Royce, W. W. (1970). Managing the Development of Large Software Sys-

tems, 328–338.

Russ, J. (2013). British Bat Calls: A Guide to Species Identification. Pelagic

Publishing.

Seddeq, H. S. (2009). Factors Influencing Acoustic Performance of Sound

Absorptive Materials. Australian Journal of Basic and Applied Sci-

ences, 3 (4), 4610–4617.

59

https://www.nationalgeographic.com/animals/article/echolocation-is-nature-built-in-sonar-here-is-how-it-works
https://www.nationalgeographic.com/animals/article/echolocation-is-nature-built-in-sonar-here-is-how-it-works
https://www.nationalgeographic.com/animals/article/echolocation-is-nature-built-in-sonar-here-is-how-it-works
https://courses.lumenlearning.com/boundless-physics/chapter/mirrors/
https://courses.lumenlearning.com/boundless-physics/chapter/mirrors/
https://help.autodesk.com/view/3DSMAX/2022/ENU/?guid=GUID-C5A3C77B-794B-4444-9783-7F2EA11C16BD#GUID-C5A3C77B-794B-4444-9783-7F2EA11C16BD__GUID-C5A3C77B-794B-4444-9783-7F2EA11C16BD
https://help.autodesk.com/view/3DSMAX/2022/ENU/?guid=GUID-C5A3C77B-794B-4444-9783-7F2EA11C16BD#GUID-C5A3C77B-794B-4444-9783-7F2EA11C16BD__GUID-C5A3C77B-794B-4444-9783-7F2EA11C16BD
https://help.autodesk.com/view/3DSMAX/2022/ENU/?guid=GUID-C5A3C77B-794B-4444-9783-7F2EA11C16BD#GUID-C5A3C77B-794B-4444-9783-7F2EA11C16BD__GUID-C5A3C77B-794B-4444-9783-7F2EA11C16BD
https://help.autodesk.com/view/3DSMAX/2022/ENU/?guid=GUID-C5A3C77B-794B-4444-9783-7F2EA11C16BD#GUID-C5A3C77B-794B-4444-9783-7F2EA11C16BD__GUID-C5A3C77B-794B-4444-9783-7F2EA11C16BD
https://developer.nvidia.com/rtx/ray-tracing
https://developer.nvidia.com/rtx/ray-tracing
https://openscad.org/
https://agilemanifesto.org/principles.html
https://agilemanifesto.org/principles.html
https://www.physicsclassroom.com/class/sound/Lesson-3/Reflection,-Refraction,-and-Diffraction
https://www.physicsclassroom.com/class/sound/Lesson-3/Reflection,-Refraction,-and-Diffraction
https://www.physicsclassroom.com/class/sound/Lesson-3/Reflection,-Refraction,-and-Diffraction

Service, M. (2012). Medical Entymology for Students (5th ed.). Cambridge

University Press.

Tabellion, E. (2010). Global Illumination Across Industries: Ray Tracing

vs. Point-based GI for Animated Films. ACM SIGGRAPH 2010

Courses. Retrieved April 16, 2022, from https://cgg.mff.cuni.cz/

∼jaroslav/gicourse2010/

The Editors of Encyclopedia Britannica. (2019, May 30). Sonar. Encyclo-

pedia Britannica. Retrieved April 23, 2022, from https : / /www .

britannica.com/technology/sonar

Wilson, D. E. (1997). Bats in question: the Smithsonian answer book.

Young, H. D., Freedman, R. A., & Ford, A. L. (2012). Sears and Zemansky’s

University Physics with Modern Physics (International 13th ed.).

Jim Smith.

60

https://cgg.mff.cuni.cz/~jaroslav/gicourse2010/
https://cgg.mff.cuni.cz/~jaroslav/gicourse2010/
https://www.britannica.com/technology/sonar
https://www.britannica.com/technology/sonar

Appendix A

Ethics Certificate

61

Certificate of Ethics Review
Project title: Simulating Echolocation Through The Use Of Slow-Light Radiosity

Name: Daniel Ellis User ID: UP94014
8

Application date: 31/03/2022
19:57:47

ER Number: TETHIC-2022-103005

You must download your referral certificate, print a copy and keep it as a record of this review.

The FEC representative(s) for the School of Computing is/are Haythem Nakkas, David Williams

It is your responsibility to follow the University Code of Practice on Ethical Standards and any Department/School
or professional guidelines in the conduct of your study including relevant guidelines regarding health and safety
of researchers including the following:

● University Policy
● Safety on Geological Fieldwork

It is also your responsibility to follow University guidance on Data Protection Policy:
● General guidance for all data protection issues
● University Data Protection Policy

Which school/department do you belong to?: School of Computing
What is your primary role at the University?: Undergraduate Student
What is the name of the member of staff who is responsible for supervising your project?: Dr. Jacek Kopecký
Is the study likely to involve human subjects (observation) or participants?: Yes
Will you gather data about people (e.g. socio-economic, clinical, psychological, biological)?: No
Will you gather data from people about some artefact or research question (e.g. opinions, feedback)?: Yes
Will the study involve National Health Service patients or staff?: No
Do human participants/subjects take part in studies without their knowledge/consent at the time, or will deception
of any sort be involved? (e.g. covert observation of people, especially if in a non-public place): No
Will you collect or analyse personally identifiable information about anyone or monitor their communications or
on-line activities without their explicit consent?: No
Does the study involve participants who are unable to give informed consent or are in a dependent position (e.g.
children, people with learning disabilities, unconscious patients, Portsmouth University students)?: No
Are drugs, placebos or other substances (e.g. food substances, vitamins) to be administered to the study
participants?: No
Will blood or tissue samples be obtained from participants?: No
Is pain or more than mild discomfort likely to result from the study?: No
Could the study induce psychological stress or anxiety in participants or third parties?: No
Will the study involve prolonged or repetitive testing?: No
Will financial inducements (other than reasonable expenses and compensation for time) be offered to
participants?: No
Are there risks of significant damage to physical and/or ecological environmental features?: No
Are there risks of significant damage to features of historical or cultural heritage (e.g. impacts of study
techniques, taking of samples)?: No
Does the project involve animals in any way?: No
Could the research outputs potentially be harmful to third parties?: No
Could your research/artefact be adapted and be misused?: No
Will your project or project deliverables be relevant to defence, the military, police or other security organisations
and/or in addition, could it be used by others to threaten UK security?: No

I confirm that I have considered the implications for data collection and use, taking into consideration
legal requirements (UK GDPR, Data Protection Act 2018 etc)

I confirm that I have considered the impact of this work and and taken any reasonable action to mitigate
potential misuse of the project outputs
I confirm that I will act ethically and honestly throughout this project

Supervisor Review
As supervisor, I will ensure that this work will be conducted in an ethical manner in line with the University Ethics Policy.

Supervisor’s signature: Date:

Appendix B

Project Initiation

Document

64

School of Computing
Project Initiation Document

Daniel Ellis
Simulating Echolocation Through The Use Of
Slow-Light Radiosity
Engineering Project

v 2020-09

Project Initiation Document Daniel Ellis

1. Basic details
Student name: Daniel Ellis

Draft project title: Simulating Echolocation Through The Use Of
Slow-Light Radiosity

Course: Software Engineering

Project supervisor: Dr Jacek Kopecký

2. Degree suitability
Please describe how your project satisfies the criteria for your current course. For example,
if you are a Software Engineering student, please explain why your project is suitable for
a Software Engineering degree.

In each section please write your text below ours in regular (non-italic) font.

As I’m studying Software Engineering, my project is suitable for my degree because at the
end of it I will have created a web application.

3. Outline of the project environment and problem to be solved

For engineering projects
without a client:

What is the problem that
you will investigate?
Why is it worth working on?

- Understanding/visualising how echolocation works.
- Educational resource? Final animations could be used to show younger students

how echolocation works in biology.

4. Project aim and objectives
What is the overall aim of the project?
What are the objectives that will lead to you meeting that aim?

Page: 2

Project Initiation Document Daniel Ellis

The aim is to improve the existing system so that it becomes possible to generate
simulations or visualizations of echolocation for educational purposes. For example, at the
end, users could use the system to enter a potential flight path of a bat, and the system will
output an animation showing what the bat ‘sees’ as it flies along the path.

The existing system can already do these things:
● load a pre-defined 3d environment and shows it
● allows movement through it
● computes the lighting with slow-light radiosity

Objectives:
- Users should be able to input a desired flight path
- A animation should be rendered and output back to the user
- create an environment for the bat flight simulation
- prepare a sample final animation

5. Project deliverables
For an engineering project, what information system artefacts will be developed? What
documents will be produced? This always includes your project report, but could also
include supporting documentation for your client such as requirement and design
specifications, test strategies, user guides, that are useful outside of the project report.

For a study project, are there anticipated outcomes besides the report, for example
datasets or recommendations to external bodies?

- A final animation of the flight, uploaded to YouTube
- Live system deployed on GitHub Pages
- GitHub repository with documentation for future contributors
- The project report

6. Project constraints
What constraints are there on your solution to the problem? For example, you could not test
a medical system on real patients.

At this point in time, I don’t believe there are any constraints that would affect my problem
or solution.

7. Project approach
How will you go about doing your project? What background research do you need to do?
For an engineering project, how will you establish your requirements? For a study project -

Page: 3

Project Initiation Document Daniel Ellis

can you refine your larger research area into research questions that you can meaningfully
answer? What skills do you require and how are you going to acquire those that you do not
already have? What methodologies are you going to use?

- For my background research, I will need to investigate how echolocation works.
- I’ll need to be able to program in JavaScript, have a moderate understanding of 3D

graphics, and some understanding of how radiosity works. These are skills which I
already have.

8. Literature review plan
What are the starting points for your research? (e.g. specific books or papers in journals,
existing reports or documents, online resources, existing systems)

Research into Echolocation
- https://www.researchgate.net/figure/Echolocation-simulation-in-real-world-scanned-e

nvironments-During-training-the-agent_fig1_346371740
Research into MIT GameLab’s ‘A Slower Speed of Light’

9. Facilities and resources
What computing/IT facilities will you use/require?
What other facilities/resources will you use/require?
Are there constraints on their availability? If funds are required to acquire them, have these
been allocated? Will they be available in time?

For example, you might need a specialist lab or equipment at the university, which might be
in use in teaching and by other project students. Your own computer and free software, or
software you already have, do not normally need to be mentioned.

I don’t believe I need any facilities or resources beyond my own personal computer and the
software already installed on it

10. Log of risks
What risks will you encounter when doing your project? What backup plans do you have if
identified things go wrong?
What is your plan for reviewing risks? Remember that risk probabilities, and hence
priorities, will change over the course of the project, so this section should be maintained.

Page: 4

Project Initiation Document Daniel Ellis

Use a table like below.

Description Impact Likelihood Mitigation First indicator

COVID-19
outbreak means
I cannot get into a
lab for usability
testing

Severe Likely Get in while I can,
prioritise lab tasks in
time.
Make an alternate
test plan that does
not need the lab.

University informs
that lab closure is
likely

My computer
might stop
working, which
could stop me
working on my
project for a period
of time

Severe Unlikely Utilise cloud storage
systems such as
GitHub and Google
Drive

Screen goes
black?

I could become
sick, and be
unable to do work
on my project

Severe Unlikely Do as much work as
I can early on, and
aim to complete my
project early so that
I have extra time if I
need it

Feeling ill

My supervisor
could become sick
and we might not
be able to have
meetings

Moderate Unlikely (?) Plan regular
meetings with clear
aims, so that most
questions I may
have can be
answered early on

Email from
supervisor /
Auto-response
email

Page: 5

Project Initiation Document Daniel Ellis

11. Project plan
What do you need to do to create the artefact / do the primary research and write the
report? Walk through your proposed approach and break it down into tasks.
When are you planning to perform these tasks? When do you need access to other people
or resources? Usually a Gantt chart is a good way of presenting the plan.
Note that plans can change over the course of the project, so this plan should be
maintained.

12. Legal, ethical, professional, social issues (mandatory)
What are the legal/ethical/professional/social issues that may impose constraints on the
project? How will you ensure that they will be addressed, or what steps will you take to
avoid/mitigate their effects?
Because my project doesn’t require any hardware such as cameras/sensors, and it doesn’t
require the collection or storage of any personal information, or in fact any interaction with
anybody outside of the project ‘team’ (Myself and my supervisor), I believe that there are no
legal, ethical, professional, or social issues that need addressing.

Whatever project work you are doing, you must consider its security implications, for the
data you generate or use, or for the software artefact itself. Please describe how you are
taking these into account. There is also a question about security on the ethics review form
(see below)

All students must complete the ethics review form at https://sums.soc.port.ac.uk/ethics at
this time. Has your supervisor (and the FEC representative, if required) seen and approved
your ethics form? Remember – this is obligatory and must be completed now.
The school's FEC representatives are Dr Matt Dennis and Dr Philip Scott.

Page: 6

Appendix C

Source Code

All of the code used in this project can be found in a public repository hosted

on GitHub at github.com/UP940148/up940148-fyp

The live version of this project can be found at up940148.github.io/up940148-

fyp

71

https://github.com/UP940148/up940148-fyp
https://up940148.github.io/up940148-fyp
https://up940148.github.io/up940148-fyp

Appendix D

Small implementations

D.1 Speeding up loops

Whilst attempting to speed up the time taken for trees to load (Sect. 7.4.2),

it was noticed that almost every loop in all Radiosity classes were im-

plemented as for...of loops. These loops generally improve readability,

but can lead to larger loading times when compared with other loop types

(Chege, 2020).

After testing the speeds of different loops, the while loop came out with the

best performance speed (Tab. D.1a), and so it was used in place of all the

for...of loops where, except for those that loop over generator functions.

The changes made in order to alter those loops are detailed next.

Loop type Time taken (s)

For...of 561.09

For 389.15

While 379.85

(a) Before changing generator functions.

Loop type Time taken (s)

For...of 300.87

For 274.19

While 244.50

(b) After changing generator functions.

Table D.1: Time taken to load default tree when using different loops.

72

JavaScript’s generator functions return an iterator when called, so that

they can be re-entered when required. A for...of loop can take this it-

erator and loop through it, however a while loop won’t iterate through

it in the same way. For this reason, all generator functions, except for

SlowRad.prepGenerator(), have been replaced with functions that return

lists (Alg. J.2). The for...of loops that iterate over generators were then

able to be replaced with different loops that iterate over a list of values.

After removing the use of generators, the different loops were tested again,

and the while loop still gave the fastest result (Tab. D.1b), for this reason

the while loops were used in place of for...of loops all throughout the

Radiosity classes.

D.2 Image saving

To be able to download the image, the canvas element that ThreeJS renders

to must be initialised with preserveDrawingBuffer set to true. This stops

the drawing buffer and the display buffer from being swapped when the

scene is drawn to the canvas. By default, preserveDrawingBuffer is set

to false, and changing it to true can cause performance issues due to the

cost of copying all of the image data from one buffer to the other. No

performance issues have been noticed by implementing this change, but

alternative solutions may need to be investigated if performance issues arise

on different systems with potentially higher resolutions.

Because ThreeJS renders the scene to a canvas element, the image can be

converted to a blob using canvas.toBlob(). This then allows the image to

be downloaded using URL.createObjectURL(blob), and by setting the href

of an anchor element to the object URL, the image can then be downloaded

by sending a click event to the anchor element.

73

Figure D.1: Poisson Disk Sampling grid. Pink cell is the container for the point.

Red grid shows the only cells that need to be considered when positioning other

points.

Source: Lague (2018)

D.3 Poisson disc sampling

As mentioned in the design, Poisson disc sampling is being used for the

placement of trees and bushes in the scene (Sect. 6.2.2). Poisson disc sam-

pling works by dividing a sample space into a grid of cells, such that the

diagonal width of each cell is equal to the minimum distance allowed be-

tween two points. This grid layout means that when a point is positioned

in the sample space, the minimum distance won’t extend beyond the 5x5

grid that is centred on the cell which the point is placed inside (Fig. D.1).

This means that when placing a new point in the plane, only points that

fall within this 5x5 grid need to be checked.

This algorithm was implemented in a folder called poisson-sampling/, and

it can be called from the command line where the minimum radius, number

of samples, and size of the square sample space can all be specified as argu-

ments. It will output the list of sampled points as a list into a JSON file,

which can then be read into the scene when positioning objects.

74

Appendix E

All tests carried out

E.1 Invisible light sources

E.1.1 Scene setup

Walls

The scene features two walls, both of size 10× 10.

Wall one is rotated by 90◦, to face the positive y direction, and is then

translated to centre at (−5, 0, 0).

Wall one is rotated by −90◦, to face the negative y direction, and is then

translated to centre at (5, 0, 0).

Both walls are sub-divided 64 times, giving a total of 8,192 patches per

wall.

Both walls have an emittance value of (0, 0, 0) and a reflectance value of

(0.5, 0.5, 0.5).

Light source

The light source is a single plane of size 1×1 centered at (0, 0, 0), and rotated

by −90◦ to face wall one.

The light source has an emittance value of (100, 100, 100) and a reflectance

value of (1, 1, 1).

Light is set to emit between time steps 0 and 10 (inclusive).

75

Figure E.1: Scene setup, for Invisible light sources test.

E.1.2 Expectations

Before making light invisible

It is expected that before setting the light source’s isLight attribute to

true, the light source will emit a pulse of white light, which will be reflected

by wall one (left). The reflected light will travel towards wall two (right) and

will be visibly reflected all along it’s surface with the exception of a black

square in the centre of the wall where the light source casts it’s shadow.

Whilst the light is visible on wall two, red light should be visible on the

surface of wall one. This is due to the light source having a natural number

value in only the red channel of it’s reflectance value, thus causing only red

light to be reflected off it’s surface.

After making light invisible

When the scene loads, the light source with makeLight set to true should

not be visible in any capacity.

The light source should still emit a pulse of light, wall one should still reflect

it towards wall two. When the light reaches wall two, there should be no

shadow cast on the surface, and no light should reflected from the light

source back towards wall one.

76

Figure E.2: Result of test when isLight = true at time step 8.

Figure E.3: Result of test when isLight = false at time step 8.

E.1.3 Results

As is shown in figures E.3 & E.2, both tests were successful and neither test

revealed any unexpected behaviour.

E.2 Activating lights on timers

E.2.1 Scene setup

Floor

The floor is a single plane of size 50 × 50 centered at (0, 0, 0), with no

rotations applied. It has an emittance value of (0, 0, 0) and a reflectance

value of (1, 1, 1).

77

Light source

The light source is a single cube of size 1× 1 centered at (0, 0, 0.5), with no

rotations applied. It has and emittance value of (1, 1, 1) and a reflectance

value of (0, 0, 0).

The light source has been set to activate between steps 0 to 10 and 30 to 40

(inclusive).

E.2.2 Expectations

• During steps 0 to 10, the light source should be emitting light, which

will be reflected by the floor plane.

• Between steps 11 to 29, the light source should be emitting no light.

For the first few frames of this period, the reflections of the previously

emitted light will be seen fading away.

• Steps 30 to 40 should see the light source emitting light once again,

with the same level of reflection in the floor plane.

• From step 41 onwards, there should be no light in the scene, except

for the reflections of the previously emitted light slowly fading out.

E.2.3 Results

As expected, the light source activated and deactivated at the given times

with no issues.

E.3 Flight path

E.3.1 Placing objects along path

To test that the flightPath() function is working as expected, a basic

scene was set up with 500 cubes positioned along the path at evenly spaced

intervals. A white background was used and all cubes were set with a

reflectance of (0, 0, 0) to make it easier to view.

78

Figure E.4: Expected curve, modelled in GeoGebra’s 3D Calculator.

(a) Curve with standard orthographic view.

(b) Curve when orthographic view stretched vertically (For clearer view).

Figure E.5: Flight path curve output by simulation.

The curve produced from the parametric equations in use (Eq. 7.2), was

plotted using Geogebra’s 3D Calculator (GeoGebra GmbH, 2020)(E.4). Af-

ter loading the simulation scene, a visual comparison was made between

the expected curve and the curve projected in the simulation. In order to

verify the similarity of the curves, the scene’s orbital camera was changed

from a perspective camera to an orthographic camera, as GeoGebra displays

plotted curves from an orthographic view.

After inspecting the curve projected by the simulation (E.5), no visual dif-

ferences were noticed when compared with the expected curve. Because

of this, the functionality to position objects along the camera’s path was

considered to be successful.

79

(a) First test (b) Second test

Figure E.6: Simulation output at step 0 during camera motion tests.

E.3.2 Moving camera along path

For both tests in this section, the scene from the previous test (Sect. E.3.1)

was used.

First test

Using the flightPath() function, the x, y, and z co-ordinates for the cam-

era at every step of the animation were retrieved and passed straight into

flightCam.position. The view from the flight camera was then tested in

the simulation to see if it passed through all the cubes set out along its

path.

Before beginning the simulation, it was clear that the camera was not lining

up as expected because the simulation at step 0 showed a vertical view of

the scene (Fig. E.6a).

Second test

After rotating the co-ordinates by +90◦ around the x-axis before passing the

co-ordinates into flightCam.position (Alg. 7.2), the flight camera view

was displaying as expected as it passed through every cube along its path

(Fig. E.6b).

80

Figure E.7: Tree with default settings rendered in OpenSCAD.

E.4 Loading STL tree

E.4.1 Scene setup

The testing scene is completely empty, spare for a single tree that has

been created using the generate-tree.jsmodule, opened with OpenSCAD

(Kintel, 2021), and then exported as a .stl file.

The tree (Fig. E.7) was generated using the default values found in the

existing system 1.

E.4.2 Expectation

It was expected that the tree would render in, with some latency due to the

complexity of the model.

1Source Code: /modeling/trees/generate-tree.js

81

https://github.com/portsoc/Slow-light-Radiosity/blob/ea2f61f4b67427691f00d3966aaba0c9821602c2/modeling/trees/generate-tree.js

Figure E.8: Chrome’s ’Out of Memory’ error screen.

E.4.3 Observation

When attempting to open the scene in the browser, there was a long delay

which ended when the browser crashed due to lack of memory, shown in

figure E.8.

The reason for this crash is believed to be because OpenSCAD is designed

for creating solid objects which can be used in CAD software (“OpenSCAD”,

n.d.). Because of this requirement for objects to be solid, all shapes made

in OpenSCAD must have at least four faces, as this is the minimum number

of faces required to create a polyhedron.

This limitation creates a requirement for every leaf in the model to have

four faces. However when 3D modelling for rendering purposes, a leaf could

be comprised of only two faces, a top and a bottom face. This increase in

faces, and the increase in vertices by proxy, is likely the cause of this memory

error.

82

E.5 Loading JSON tree

E.5.1 Scene setup

As it was with section E.4, the scene consists of a single tree and no other

objects. In this scene however, the tree is imported from a JSON file.

E.5.2 Expectations

It is expected that when the scene loads, there will be some delay and then

a tree that is structurally identical to figure E.7 will render in.

E.5.3 Observation

As expected, there was a delay when the scene loaded, however the tree

rendered in exactly as anticipated (Fig. E.9) with the exception of some

branches which appear to be incorrectly positioned.

The most pressing issue with this scene is the time taken for the exitances

to be calculated. By using the performance.now() function to log the time

taken, it was found that the scene with just this single tree took an average

of 49 minutes and 57 seconds (2,997,299ms) to load and calculate all the

exitance values, when tested three times.

E.6 Faster loading of JSON tree

E.6.1 Scene setup

The scene is completely empty, except for the default tree, which has had all

branches with a width value less than 0.7 removed from it’s structure.

E.6.2 Expectations

It is expected that there will be a noticeable improvement in loading time

when compared to the 49 minutes 57 seconds observed in the previous test

(Sec. E.5.3).

83

Figure E.9: First attempt JSON tree.

Test number 1 2 3 Average

Time taken (ms) 367,145 367,838 276,869 337,284

Time taken (m:ss) 6:07 6:08 4:37 5:37

Table E.1: Time taken to load the default tree with branches trimmed

The time taken to load will be determined by taking the output of the

performance.now() function, after the tree has loaded and all exitance

values have been computed.

E.6.3 Results

As can be seen from table E.1, reducing the number of branches has caused

an immense performance increase for the system.

E.7 Browser exitance exporting and importing

E.7.1 Basic scene

When attempting to export the exitance data of the ’TEST: Invisible

light source’ scene before any compression (Sec.), the exported file came

84

out to 128,049KB (125MB). Importing this exitance data into the scene

worked correctly with no visual faults.

E.7.2 Complex scene

When testing on the ’Forest’ scene, the browser crashed due to a lack of

memory (Fig. E.8). The crash only occurred whilst calculating the exi-

tances, after both the RFF and distance arrays had been calculated.

E.8 Command line exitance generation

E.8.1 Basic scene

Saving the exitance data of the ’TEST: Invisible light source’ scene

resulted in a file that was completely identical to the one generated in the

previous test (Sec. E.7.1).

E.8.2 Complex scene

When attempting to export the ’Forest’ scene’s exitance data from the

command line, the system didn’t crash as it did when attempting to export

from the browser (Sec. E.7.2). It saved a file that was 365MB in size, and

when it was loaded into the system in the browser, everything looked as

expected.

E.9 Exitance file compression

E.9.1 Lossless RLE compression

The run length encoding was applied to the ’TEST: Invisible light source’

and ’Forest’ scenes’ exitance data, and the files were compressed from

125MB to 119.7MB and 365.5MB to 364.8MB respectively (Tab. E.2).

Loading the exitance data back into the scene gave no errors, and everything

looked as expected.

85

Scene Uncompressed RLE only + Precision + Rounding

Forest 374,236 373,511 89,316 55,045

Invisible light 128,049 122,543 23,338 676

Table E.2: File size (KB) of exitance data under different compression settings.

E.9.2 Lossy compression

Precision

Changing the precision to a zero decimal place exponential compressed

the file sizes from 119.7MB to 22.7MB and 364.8MB to 87.2MB for the

’TEST: Invisible light source’ and ’Forest’ scenes respectively (Tab.

E.2).

No errors occurred, and there were minimal visual differences in the simu-

lation when compared to the uncompressed data (Fig. I.1b & I.2b).

Rounding

Implementing the rounding feature to the exitance compression system caused

a further decrease in file size from 22.7MB to 675KB and 87.2MB to 53.7MB

for the ’TEST: Invisible light source’ and ’Forest’ scenes respectively

(Tab. E.2).

When comparing the simulation output produced from the uncompressed

exitance files (Figs. I.1a & I.2a), with the output produced from the exitance

files that had their exponential precision set to zero and their near-zero

values rounded (Figs. I.1c & I.2c), there’s very minimal noticeable difference.

The differences can be seen more clearly in figure I.3.

E.10 Deployment for testing

In order to receive user feedback, the system was deployed to GitHub Pages

and checked to make sure everything worked as expected.

86

(a) Before (b) After

Figure E.10: Forest scene before and after opening a different coloured scene.

E.10.1 Discoveries

With the existence of some scenes that have coloured trees, occasionally

a scene which should be greyscale will load in with coloured trees. This

problem only occurred when loading a greyscale scene after loading a colour

scene (Fig. E.10).

This issue was caused by a previously unknown feature of JS imports,

whereby an imported module is only evaluated once, regardless of how many

times it is imported across different files. The use of global variables deter-

mining the reflectance of the surfaces making up the tree structure, meant

that when one scene was loaded in colour, it would update the reflectance

variables for every scene that is viewed after it.

This was fixed by removing the global variables in json-tree-loader.js

and replacing them with local variables inside the load() function, which

can be set when the function is called, and then passed as parameters to the

other functions that need the values.

With the exception of this colouring issue, no faults were discovered when

deploying the system.

87

Appendix F

Full evaluation of successful

requirements

F.1 Must Have

MH1 - A moving camera on a pre-planned path.

The system features two cameras, the default orbital camera provided by

the existing system, and the flight camera which was created in section 7.3.3.

The ability to toggle between the cameras during runtime is enabled through

the use of a button in the side menu.

MH2 - Application served on GitHub Pages.

The system is successfully deployed to my GitHub pages1. Since deploying

the system, no errors of any kind have arisen.

MH3 - Pre-loaded exitance data.

The system is able to load in pre-generated exitance data with no issues,

and if no exitance data is available for the system to use, it will generate it

at run-time. With more complex scenes, the browser is unable to calculate

the exitance data, however with the creation of the command line system

(Sect. 7.5.1), the exitance data can be generated externally, allowing for

more complex scenes to still be viewed in the browser.

1https://up940148.github.io/up940148-fyp/

88

https://up940148.github.io/up940148-fyp/

MH4 - Light sources that activate sequentially.

Sequentially emitting light sources were successfully implemented in section

7.2.2. Light sources can be set to activate at whatever time steps they are

needed.

MH5 - New method of storing and loading trees.

Tree models are now successfully stored in JSON format, and the new tree

loading module allows trees to be loaded into the browser without crash-

ing.

F.2 Should Have

SH1 - Command line calculation ability.

The command line system is fully operational and can successfully generate

the exitance data for any scene made available in environments-list.js.

For some more complex scenes, the NodeJS command line option--max-old-

space-size may need to be used due to the JavaScript’s heap limit.

SH2 - Light sources that aren’t visible.

Light emitting surfaces in the scene can be made invisible by setting their

isLight property to true. Whilst this ability to have objects that can’t

receive light but can emit light does break the reciprocity rule of the radiosity

algorithm, no errors have arisen as the result of this feature.

SH3 - Compressed exitance data files.

The exitance files generated by the system are compressed correctly, and can

be uncompressed for use with no issues. Unfortunately lossy compression

was needed in order to allow the files to be deployed to GitHub Pages,

however this lossy compression has minimal effect on the simulation output,

as can be seen in figures I.1, I.2 and I.3.

89

F.3 Could Have

CH2 - Exportable images.

The button added to the side menu allows the current simulation output

to be downloaded as a PNG, with none of the interface obscuring the scene

(Sect. D.2).

90

Appendix G

Participant Feedback Form

91

Informed Consent
Hello,

I am a final year Software Engineering Student at the University of Portsmouth. I am doing an engineering project where I

have created a web application that uses a slowed down form of the Radiosity algorithm in a 3D environment, to attempt

to simulate how echolocation detection is perceived by a bat in a forest.

The deployed system can be found at https://project.d-ellis.net/

The purpose of this feedback form is to gather information regarding the performance and potential applications of the

simulation. Collecting this data will help me write an informed evaluation of the artefact for my final report.

If you have any issues or concerns regarding the artefact or this feedback form, please contact me at

up940148@myport.ac.uk.

Many thanks,

Daniel Ellis

Please read through the Participant Information Sheet for this study.
The Participant Information Sheet can be found at this link:

https://docs.google.com/document/d/12D1YfwJdyPCqjjPwBsnuuvsSPd8Z-uHQcbrIKm14x48/edit?usp=sharing

1.

Tick all that apply.

I confirm that I have read and understood the Participant Information Sheet for this study.

I understand that data collected during this study will be processed in accordance with data
protection laws, as explained in the Participant Information Sheet.

I understand that my participation is voluntary, and I am free to withdraw at any time up until 23:59
on April 29th 2022 without giving any reason.

I understand that by completing and submitting this feedback form, I am providing implied consent
for my responses to be used for the purposes outlined in the Participant Information Sheet.

About you

2.

Echolocation with Slow-light Radiosity Feedback Form
User feedback form

*Required

Please confirm the following *

Please enter here the unique ID that I provided to you in the email that directed you to

the artefact.

*

This ID will be used to destroy your data if you wish to withdraw from the study at any time.

3.

Mark only one oval.

Yes

No

Prefer not to say

4.

Mark only one oval.

Biological Sciences

Visual Arts

Technology

Other

Technical

Feedback

This section of the form will go over the questions relating to the technical performance of
the simulation.

5.

Mark only one oval.

Other:

Chrome

Firefox

Internet Explorer

Microsoft Edge

Opera

Prefer not to say

6.

Do you have experience in teaching? *

Which of these best describes the area in which you have most experience? *

What browser did you run the simulation on? *

What version of the browser did you use?

Leave blank if unsure

7.

Mark only one oval.

Yes

No

8.

9.

Other:

Tick all that apply.

Low framerate in animation playback

Excessively long scene loading time (longer than 10 seconds)

Scene not loading at all

Animation freezing/stuttering

10.

Did the simulation crash at any point during use? *

If the simulation crashed, can you provide details of the crash here

What type of crash, what scene it crashed on, etc. Leave blank if unsure.

Did you encounter any of the following performance issues?

Select all that apply

If you encountered any of the above performance issues, please elaborate with any

additional details here

11.

12.

Mark only one oval.

The system crashed before it could be tested Skip to question 26

The system did not crash before it could be tested

Simulation

applications

This section will go over questions relating to potential applications for the
simulation.

13.

Mark only one oval.

Yes

No

Unsure

14.

Are there any other notes about the technical performance of the system that you wish

to mention?

Leave blank if no

Did the system crash before it could be tested? *

For example: The system crashed when it was loading up

Do you think that this system has any artistic value to it? *

Are there any features that could be added to the simulation itself (not the user

interface), that would make this more aesthetically appealing?

Difference speeds, more complex models, colour to represent the doppler effect, etc.

15.

Mark only one oval.

Yes

No

Unsure

16.

17.

User Interface
This section will go over questions relating to the design of the simulation's user interface

18.

Mark only one oval.

Yes

No

Do you think that this system may be useful for demonstrating the concept of

echolocation to students studying biology? (At any level of study)

*

Following on from the previous question. Are there any features that could be added to

make the simulation more useful for teaching purposes?

Leave blank if unsure

Are there any other notes about the potential applications of the simulation that you wish

to mention?

Leave blank if no

Did you have to refer to the user interface help page at any point whilst using the

system?

*

19.

20.

Mark only one oval.

Very easy

1 2 3 4 5

Very difficult

21.

Mark only one oval.

Very easy

1 2 3 4 5

Very difficult

22.

Mark only one oval.

Very easy

1 2 3 4 5

Very difficult

If so, then what made you visit the help page?

How easy did you find it to change the scene? *

How easy did you find it to move through the animation? *

Using the play, pause, step forward, step backward, go to start, go to end, switch direction, and repeat controls

How easy did you find it to change simulation settings? *

Changing playback speed, gamma, exposure, etc

23.

Mark only one oval.

Very easy

1 2 3 4 5

Very difficult

24.

25.

Final remarks
Thank you for taking the time to go through this form!

26.

This content is neither created nor endorsed by Google.

Overall. How easy to use did you find the interface? *

Were there any features of the interface that you were expecting, which weren't present?

Are there any features you would want to see added that you think would make the

system more useful?

Do you have any additional feedback points that weren't covered in the rest of the form?

If so, please enter them here

 Forms

Appendix H

Participant Feedback

Responses

This shows the responses submitted to the feedback form, with the partici-

pants’ unique IDs omitted.

100

Please confirm the following

6 responses

Do you have experience in teaching?

6 responses

Which of these best describes the area in which you have most

experience?

6 responses

Echolocation with Slow-light Radiosity

Feedback Form
6 responses

Copy

0 1 2 3 4 5 6

I confirm that I have read
and understood the

Participant Information S…
I understand that data

collected during this study
will be processed in acco…

I understand that my
participation is voluntary,

and I am free to withdraw…
I understand that by

completing and submitting
this feedback form, I am…

6 (100%)6 (100%)6 (100%)

6 (100%)6 (100%)6 (100%)

6 (100%)6 (100%)6 (100%)

6 (100%)6 (100%)6 (100%)

Copy

Yes
No
Prefer not to say

66.7%

33.3%

Copy

Biological Sciences
Visual Arts
Technology
Other

16.7%

66.7%

16.7%

Technical Feedback

What browser did you run the simulation on?

6 responses

What version of the browser did you use?

2 responses

Version 100.0.4896.127

100.0.4896.127

Did the simulation crash at any point during use?

6 responses

If the simulation crashed, can you provide details of the crash here

4 responses

There was a black screen with a few icons and an axis at the side, as well as a play button and
a line, which turned red once play was clicked. There was no scene shown.

Crashed on the forest scene, with error code: out of memory

Crashed about 5 seconds into moving into the trees. Computer started struggling and it
crashed

unresponsive and time out on pages

Copy

Chrome
Firefox
Internet Explorer
Microsoft Edge
Opera
Prefer not to say
Safari

16.7%

83.3%

Copy

Yes
No

33.3%

66.7%

Did you encounter any of the following performance issues?

4 responses

If you encountered any of the above performance issues, please elaborate with any

additional details here

4 responses

The initial program opened, but nothing was really usable and then an aw snap page opened
and said Error code: Out of Memory.

The forest scene loaded quickly and immediately after crashed

Took a while to load, then animation had low framerate and freezes while playing

Some pages loaded very slowly but animation playbacks wouldn't load and then crashed

Are there any other notes about the technical performance of the system that you

wish to mention?

1 response

It didnt let me access any of the other options in the side bar besides the eye one. Think my
laptop is too slow

Did the system crash before it could be tested?

6 responses

Copy

0 1 2 3

Low framerate in animation
playback

Excessively long scene
loading time (longer than

10 seconds)

Scene not loading at all

Animation freezing/
stuttering

1 (25%)1 (25%)1 (25%)

1 (25%)1 (25%)1 (25%)

3 (75%)3 (75%)3 (75%)

1 (25%)1 (25%)1 (25%)

Copy

The system crashed before it
could be tested
The system did not crash before
it could be tested

50%

50%

Simulation applications

Do you think that this system has any artistic value to it?

3 responses

Are there any features that could be added to the simulation itself (not the user

interface), that would make this more aesthetically appealing?

2 responses

More variety to the environment, different objects maybe.

Silly one but capitalization of words on sidebar panel, when hoovering over the pictures its all
lowercase

Do you think that this system may be useful for demonstrating the

concept of echolocation to students studying biology? (At any level of

study)

3 responses

Copy

Yes
No
Unsure

100%

Copy

Yes
No
Unsure

33.3%

66.7%

Following on from the previous question. Are there any features that could be added

to make the simulation more useful for teaching purposes?

2 responses

Opportunity to control the motion and direction of the camera. Attempt to avoid objects using
echolocation.

maybe birds eye view with arrows / lines to show the sound bouncing

Are there any other notes about the potential applications of the simulation that you

wish to mention?

0 responses

No responses yet for this question.

User Interface

Did you have to refer to the user interface help page at any point whilst

using the system?

3 responses

If so, then what made you visit the help page?

1 response

I wanted to see what else could be done.

Copy

Yes
No

66.7%

33.3%

How easy did you find it to change the scene?

3 responses

How easy did you find it to move through the animation?

3 responses

How easy did you find it to change simulation settings?

3 responses

Copy

1 2 3 4 5
0.00

0.25

0.50

0.75

1.00
1 (33.3%) 1 (33.3%)

0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%)

1 (33.3%)

Copy

1 2 3 4 5
0

1

2
2 (66.7%)

0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%)

1 (33.3%)

0 (0%)0 (0%)0 (0%)

Copy

1 2 3 4 5
0.00

0.25

0.50

0.75

1.00
1 (33.3%) 1 (33.3%)

0 (0%)0 (0%)0 (0%)

1 (33.3%)

0 (0%)0 (0%)0 (0%)

Overall. How easy to use did you find the interface?

3 responses

Were there any features of the interface that you were expecting, which weren't

present?

1 response

Only as previously mentioned

Are there any features you would want to see added that you think would make the

system more useful?

2 responses

Only as previously mentioned

More accessible to laptops and slower processing computers

Final remarks

Do you have any additional feedback points that weren't covered in the rest of the

form?

0 responses

No responses yet for this question.

This content is neither created nor endorsed by Google. Report Abuse - Terms of Service - Privacy Policy

Copy

1 2 3 4 5
0.00

0.25

0.50

0.75

1.00
1 (33.3%) 1 (33.3%)

0 (0%)0 (0%)0 (0%)

1 (33.3%)

0 (0%)0 (0%)0 (0%)

 Forms

Appendix I

Simulation Differences From

Compression

108

(a) Uncompressed.

(b) When exponential precision set to 0 decimal places.

(c) When rounding values that are close to 0.

Figure I.1: The ’TEST: Invisible light source’ scene at time step 7, with

different levels of compression.

109

(a) Uncompressed.

(b) When exponential precision set to 0 decimal places.

(c) When rounding values that are close to 0.

Figure I.2: The ’Forest’ scene at time step 118, with different levels of compres-

sion.

110

(a) Difference in ’TEST: Invisible light source’ scene at time step 7.

(b) Difference in ’Forest’ scene at time step 118.

Figure I.3: Absolute differences between uncompressed exitance data and the fully

compressed exitance data. Created by overlaying images in Adobe’s Photoshop and

using the ’Difference’ blend mode (Adobe, 2022).

111

Appendix J

Code Comparison

112

// Old way of getting vertices

* _vertexIterator() {

for (const i of this.instances) {

for (const v of i.vertices) {

yield v;

}

}

}

get vertices() {

return this._vertexIterator();

}

(a) Original generator function (Kopecký & Mattone, 2020, environment.js L62-L72).

// New method of getting vertices

get vertices() {

const verts = [];

let i = 0;

while (i < this.instances.length) {

let v = 0;

while (v < this.instances[i].vertices.length) {

verts.push(this.instances[i].vertices[v]);

v++;

}

i++;

}

return verts;

}

(b) New method which returns a list (Source code, environment.js L68-L80).

Algorithm J.2: Comparison of generator function versus returning a list when

getting environment vertices.

113

https://github.com/portsoc/Slow-light-Radiosity/blob/dc5e7847c925224f1d7a748c6a1c67ce2a010f3f/radiosity/environment.js#L62-L72
https://github.com/UP940148/up940148-fyp/blob/0d1fb69f95385757def319c0a5e3f42e16c4af8c/radiosity/environment.js#L68-L80

	Abstract
	Table of Contents
	Acknowledgements
	Introduction
	Aim
	Objectives
	Report structure

	Background
	How light works
	Radiosity
	What it does
	How it works
	Useful terms

	Literature Review
	How sound works
	Acoustic attenuation and light absorption

	Echolocation
	In bats
	In sonar

	Project Management and Methodology
	The Explorative method
	Requirements elicitation
	Development process

	Project Management

	Requirements
	Must Have
	Should Have
	Could Have
	Won't Have

	Design
	User interface
	Scene design
	Trees
	Model placement

	Exitance files
	Command line system
	Summary

	Implementation
	Development setup
	Light sources
	Invisible lights
	Lights on timers

	Flight path
	Parametric equations
	Placing objects along the path
	Moving the camera along the path

	JSON trees
	Fixing branches
	Loading improvements

	Exitance files
	Command line system
	File compression

	Summary

	Testing
	System setup
	Testing machine
	Testing browser

	Tests done
	Issues that arose during testing
	Moving camera along a path #1
	Loading STL tree
	Browser exitance exporting and importing

	Evaluation
	Evaluation against requirements
	Requirements that weren't met

	User feedback
	Results analysis

	Success against the project's aim
	Critique
	Approach
	Research
	Model suitability

	Conclusions
	Future considerations
	Different shape light sources
	Improved tree loading
	Remove the system from the browser
	Adjusting the radiosity model
	Adding sound

	Personal reflection

	References
	Ethics Certificate
	Project Initiation Document
	Source Code
	Small implementations
	Speeding up loops
	Image saving
	Poisson disc sampling

	All tests carried out
	Invisible light sources
	Scene setup
	Expectations
	Results

	Activating lights on timers
	Scene setup
	Expectations
	Results

	Flight path
	Placing objects along path
	Moving camera along path

	Loading STL tree
	Scene setup
	Expectation
	Observation

	Loading JSON tree
	Scene setup
	Expectations
	Observation

	Faster loading of JSON tree
	Scene setup
	Expectations
	Results

	Browser exitance exporting and importing
	Basic scene
	Complex scene

	Command line exitance generation
	Basic scene
	Complex scene

	Exitance file compression
	Lossless RLE compression
	Lossy compression

	Deployment for testing
	Discoveries

	Full evaluation of successful requirements
	Must Have
	Should Have
	Could Have

	Participant Feedback Form
	Participant Feedback Responses
	Simulation Differences From Compression
	Code Comparison

